Abstract
Mechanical ventilation with high tidal volumes (HVT) impairs lung liquid clearance (LLC) and downregulates alveolar epithelial Na-K-ATPase. We have previously reported that the Na-K-ATPase α2-subunit contributes to LLC in normal rat lungs. Here we tested whether overexpression of Na-K-ATPase α2-subunit in the alveolar epithelium would increase clearance in a HVT model of lung injury. We infected rat lungs with a replication-incompetent adenovirus that expresses Na-K-ATPase α2-subunit gene (Adα2) 7 days before HVT mechanical ventilation. HVT ventilation decreased LLC by ∼50% in untreated, sham, and Adnull-infected rats. Overexpression of Na-K-ATPase α2-subunit prevented the decrease in clearance caused by HVT and was associated with significant increases in Na-K-ATPase α2 protein abundance and activity in peripheral lung basolateral membrane fractions. Ouabain at 10-5 M, a concentration that inhibits the α2 but not the Na-K-ATPase α1, decreased LLC in Adα2-infected rats to the same level as sham and Adnull-infected lungs, suggesting that the increased clearance in Adα2 lungs was due to Na-K-ATPase α2 expression and activity. In summary, we provide evidence that augmentation of the Na-K-ATPase α2-subunit, via gene transfer, may accelerate LLC in the injured lung.
Original language | English (US) |
---|---|
Pages (from-to) | L1233-L1237 |
Journal | American Journal of Physiology - Lung Cellular and Molecular Physiology |
Volume | 294 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2008 |
Funding
Keywords
- Acute lung injury
- Acute respiratory distress syndrome
- Experimental models
- Gene therapy
ASJC Scopus subject areas
- Physiology (medical)
- Physiology
- Pulmonary and Respiratory Medicine
- Cell Biology