OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity

Kate Poropatich, Donye Dominguez, Wen Ching Chan, Jorge Andrade, Yuanyuan Zha, Brian Wray, Jason Miska, Lei Qin, Lisa Cole, Sydney Coates, Urjeet Patel, Sandeep Samant, Bin Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Plasmacytoid DCs (pDCs), the major producers of type I interferon, are principally recognized as key mediators of antiviral immunity. However, their role in tumor immunity is less clear. Depending on the context, pDCs can promote or suppress antitumor immune responses. In this study, we identified a naturally occurring pDC subset expressing high levels of OX40 (OX40+ pDC) enriched in the tumor microenvironment (TME) of head and neck squamous cell carcinoma. OX40+ pDCs were distinguished by a distinct immunostimulatory phenotype, cytolytic function, and ability to synergize with conventional DCs (cDCs) in generating potent tumor antigen-specific CD8+ T cell responses. Transcriptomically, we found that they selectively utilized EIF2 signaling and oxidative phosphorylation pathways. Moreover, depletion of pDCs in the murine OX40+ pDC-rich tumor model accelerated tumor growth. Collectively, we present evidence of a pDC subset in the TME that favors antitumor immunity.

Original languageEnglish (US)
Pages (from-to)3528-3542
Number of pages15
JournalJournal of Clinical Investigation
Issue number7
StatePublished - Jul 1 2020

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'OX40<sup>+</sup> plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity'. Together they form a unique fingerprint.

Cite this