Abstract
Causal graphs, such as directed acyclic graphs (DAGs) and partial ancestral graphs (PAGs), represent causal relationships among variables in a model. Methods exist for learning DAGs and PAGs from data and for converting DAGs to PAGs. However, these methods only output a single causal graph consistent with the independencies/dependencies (the Markov equivalence class M) estimated from the data. However, many distinct graphs may be consistent with M, and a data modeler may wish to select among these using domain knowledge. In this paper, we present a method that makes this possible. We introduce PAG2ADMG, the first method for enumerating all causal graphs consistent with M, under certain assumptions. PAG2ADMG converts a given PAG into a set of acyclic directed mixed graphs (ADMGs). We prove the correctness of the approach and demonstrate its efficiency relative to brute-force enumeration.
Original language | English (US) |
---|---|
Title of host publication | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 |
Publisher | AAAI press |
Pages | 4987-4988 |
Number of pages | 2 |
State | Published - Jan 1 2017 |
Event | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States Duration: Feb 4 2017 → Feb 10 2017 |
Other
Other | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 2/4/17 → 2/10/17 |
ASJC Scopus subject areas
- Artificial Intelligence