Pattern formation during electrochemical and liquid metal dealloying

Ian McCue, Alain Karma, Jonah Erlebacher

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Dealloying has evolved from a problematic corrosion process to a versatile tool for scalable fabrication of nanostructured metals. While the original, and majority of, work in the area has focused on electrochemical dealloying, a powerful variation of dealloying-liquid metal dealloying-has recently gained popularity. This process relies on a melt to carry out selective dissolution, replacing the traditional electrolyte solution. While electrolytes and molten metals are both suitable dealloying media, they can lead to very different morphologies. In this article, we compare and contrast what is known about the microscale physics and chemistry controlling microstructural evolution in electrochemical and liquid metal dealloying. We conclude that the core phenomenology of porosity evolution- A competition between dissolution and interface diffusion-is similar in both dealloying processes, but that the relative magnitudes of these two processes control interfacial pattern formation.

Original languageEnglish (US)
Pages (from-to)27-34
Number of pages8
JournalMRS Bulletin
Issue number1
StatePublished - Jan 1 2018
Externally publishedYes


  • diffusion
  • morphology
  • Nanostructure
  • self-assembly

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Pattern formation during electrochemical and liquid metal dealloying'. Together they form a unique fingerprint.

Cite this