Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation

Levi J. Hargrove*, Blair A. Lock, Ann M. Simon

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

43 Scopus citations

Abstract

Pattern recognition myoelectric control shows great promise as an alternative to conventional amplitude based control to control multiple degree of freedom prosthetic limbs. Many studies have reported pattern recognition classification error performances of less than 10% during offline tests; however, it remains unclear how this translates to real-time control performance. In this contribution, we compare the real-time control performances between pattern recognition and direct myoelectric control (a popular form of conventional amplitude control) for participants who had received targeted muscle reinnervation. The real-time performance was evaluated during three tasks; 1) a box and blocks task, 2) a clothespin relocation task, and 3) a block stacking task. Our results found that pattern recognition significantly outperformed direct control for all three performance tasks. Furthermore, it was found that pattern recognition was configured much quicker. The classification error of the pattern recognition systems used by the patients was found to be 16% ±(1.6%) suggesting that systems with this error rate may still provide excellent control. Finally, patients qualitatively preferred using pattern recognition control and reported the resulting control to be smoother and more consistent.

Original languageEnglish (US)
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages1599-1602
Number of pages4
DOIs
StatePublished - Oct 31 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation'. Together they form a unique fingerprint.

Cite this