Pauli Check Extrapolation for Quantum Error Mitigation

Quinn Langfitt*, Ji Liu*, Benchen Huang, Alvin Gonzales, Kaitlin Nicole Smith, Nikos Hardavellas, Zain H. Saleem

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Pauli Check Sandwiching (PCS) is an error mitigation scheme that uses pairs of parity checks to detect errors in the payload circuit. While increasing the number of check pairs improves error detection, it also introduces additional noise to the circuit and exponentially increases the required sampling size. To address these limitations, we propose a novel error mitigation scheme, Pauli Check Extrapolation (PCE), which integrates PCS with an extrapolation technique similar to Zero-Noise Extrapolation (ZNE). However, instead of extrapolating to the 'zero-noise' limit, as is done in ZNE, PCE extrapolates to the 'maximum check' limit-the number of check pairs theoretically required to achieve unit fidelity. In this study, we focus on applying a linear model for extrapolation and also derive a more general exponential ansatz based on the Markovian error model. We demonstrate the effectiveness of PCE by using it to mitigate errors in the shadow estimation protocol, particularly for states prepared by the variational quantum eigensolver (VQE). Our results show that this method can achieve higher fidelities than the state-of-the-art Robust Shadow (RS) estimation scheme, while significantly reducing the number of required samples by eliminating the need for a calibration procedure. We validate these findings on both fully-connected topologies and simulated IBM hardware backends.

Original languageEnglish (US)
Title of host publicationWorkshops Program, Posters Program, Panels Program and Tutorials Program
EditorsCandace Culhane, Greg T. Byrd, Hausi Muller, Yuri Alexeev, Yuri Alexeev, Sarah Sheldon
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages418-419
Number of pages2
ISBN (Electronic)9798331541378
DOIs
StatePublished - 2024
Event5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024 - Montreal, Canada
Duration: Sep 15 2024Sep 20 2024

Publication series

NameProceedings - IEEE Quantum Week 2024, QCE 2024
Volume2

Conference

Conference5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024
Country/TerritoryCanada
CityMontreal
Period9/15/249/20/24

Keywords

  • hybrid quantum-classical architectures & computing
  • NISQ algorithms
  • quantum error mitigation

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering
  • Safety, Risk, Reliability and Quality
  • Computational Mathematics
  • Statistical and Nonlinear Physics

Fingerprint

Dive into the research topics of 'Pauli Check Extrapolation for Quantum Error Mitigation'. Together they form a unique fingerprint.

Cite this