Pause point spectra in DNA constant-force unzipping

J. D. Weeks, Julius B. Lucks*, Y. Kafri, C. Danilowicz, D. R. Nelson, M. Prentiss

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Under constant applied force, the separation of double-stranded DNA into two single strands is known to proceed through a series of pauses and jumps. Given experimental traces of constant-force unzipping, we present a method whereby the locations of pause points can be extracted in the form of a pause point spectrum. A simple theoretical model of DNA constant-force unzipping is presented, which generates theoretical pause point spectra through Monte Carlo simulation of the unzipping process. The locations of peaks in the experimental and theoretical pause point spectra are found to be nearly coincident below 6000 basepairs for unzipping the bacteriophage λ-genome. The model only requires the sequence, temperature, and a set of empirical basepair binding and stacking energy parameters, and the good agreement with experiment suggests that pause point locations are primarily determined by the DNA sequence. The model is also used to predict pause point spectra for the bacteriophage φX174 genome. The algorithm for extracting the pause point spectrum might also be useful for studying related systems which exhibit pausing behavior such as molecular motors.

Original languageEnglish (US)
Pages (from-to)2752-2765
Number of pages14
JournalBiophysical Journal
Volume88
Issue number4
DOIs
StatePublished - Apr 2005

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Pause point spectra in DNA constant-force unzipping'. Together they form a unique fingerprint.

Cite this