Abstract
Lung disease in children often results in pulmonary hypertension and right heart failure. The availability of a pediatric artificial lung (PAL) would open new approaches to the management of these conditions by bridging to recovery in acute disease or transplantation in chronic disease. This study investigates the efficacy of a novel PAL in alleviating an animal model of pulmonary hypertension and increased right ventricle afterload. Five juvenile lambs (20-30 kg) underwent PAL implantation in a pulmonary artery to left atrium configuration. Induction of disease involved temporary, reversible occlusion of the right main pulmonary artery. Hemodynamics, pulmonary vascular input impedance, and right ventricle efficiency were measured under 1) baseline, 2) disease, and 3) disease + PAL conditions. The disease model altered hemodynamics variables in a manner consistent with pulmonary hypertension. Subsequent PAL attachment improved pulmonary artery pressure (p = 0.018), cardiac output (p = 0.050), pulmonary vascular input impedance (Z.0 p = 0.028; Z.1 p = 0.058), and right ventricle efficiency (p = 0.001). The PAL averaged resistance of 2.3 ± 0.8 mm Hg/L/min and blood flow of 1.3 ± 0.6 L/min. This novel low-resistance PAL can alleviate pulmonary hypertension in an acute animal model and demonstrates potential for use as a bridge to lung recovery or transplantation in pediatric patients with significant pulmonary hypertension refractory to medical therapies.
Original language | English (US) |
---|---|
Pages (from-to) | 223-228 |
Number of pages | 6 |
Journal | ASAIO Journal |
Volume | 63 |
Issue number | 2 |
DOIs | |
State | Published - 2017 |
Funding
This work was supported by the National Institutes of Health (Grant 2RO1 HD015434-29).
Keywords
- ECMO
- artificial lung
- lung transplant
- pulmonary artery hypertension
ASJC Scopus subject areas
- Bioengineering
- Biophysics
- Biomedical Engineering
- Biomaterials