Performance evaluation of an algorithm for the identification of time-varying joint stiffness

Tanya Starret Visser, Daniel Ludvig, Robert E. Kearney

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Previously, we described a time-varying, parallel-cascade system identification algorithm that estimates intrinsic and reflex stiffness dynamics. It uses an iterative technique, in conjunction with established, time-varying, identification methods, to estimate the two pathways from ensembles of input and output realizations having the same time-varying behavior. This paper presents the results of a study that systematically evaluated the performance of the algorithm. Simulations were used to determine the algorithm's ability to track rapid changes in dynamic stiffness, and quantify its performance limits. There was close agreement between the simulated and estimated joint stiffness demonstrating that the algorithm estimates stiffness correctly even when it changes rapidly. However, the algorithm's ability to identify the reflex pathway was shown to depend on the relative contributions of the intrinsic and reflex pathways to the overall torque. As the intrinsic contribution to the output grew it became increasingly difficult to identify the reflex pathway accurately. The quality of the reflex identification greatly improved as the number of realizations in the data ensembles increased. More realizations were needed as the signal-to-noise ratio decreased and the relative contribution of the reflex pathway decreased. For good results, under typical time-varying experimental conditions, between 500 and 800 realizations are required.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages3995-3998
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - Jan 1 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'Performance evaluation of an algorithm for the identification of time-varying joint stiffness'. Together they form a unique fingerprint.

Cite this