TY - JOUR
T1 - Perturbation-Induced Stepping Post-stroke
T2 - A pilot study demonstrating altered strategies of both legs
AU - Martinez, Katherine M.
AU - Rogers, Mark W.
AU - Blackinton, Mary T.
AU - Samuel Cheng, M.
AU - Mille, Marie Laure
N1 - Publisher Copyright:
Copyright © 2019 Martinez, Rogers, Blackinton, Cheng and Mille. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Introduction: Asymmetrical sensorimotor function after stroke creates unique challenges for bipedal tasks such as walking or perturbation-induced reactive stepping. Preference for initiating steps with the less-involved (preferred) leg after a perturbation has been reported with limited information on the stepping response of the more-involved (non-preferred) leg. Understanding the capacity of both legs to respond to a perturbation would enhance the design of future treatment approaches. This pilot study investigated the difference in perturbation-induced stepping between legs in stroke participant and non-impaired controls. We hypothesized that stepping performance will be different between groups as well as between legs for post-stroke participants. Methods: Thirty-six participants (20 persons post-stroke, 16 age matched controls) were given an anterior perturbation from three stance positions: symmetrical (SS), preferred asymmetrical (PAS−70% body weight on the preferred leg), and non-preferred asymmetrical (N-PAS−70% body weight on the non-preferred leg). Kinematic and kinetic data were collected to measure anticipatory postural adjustment (APA), characteristics of the first step (onset, length, height, duration), number of steps, and velocity of the body at heel strike. Group differences were tested using the Mann-Whitney U-test and differences between legs tested using the Wilcoxon signed-rank test with an alpha level of 0.05. Results: Stepping with the more-involved leg increased from 11.5% of trials in SS and N-PAS up to 46% in PAS stance position for participants post-stroke. Post-stroke participants had an earlier APA and always took more steps than controls to regain balance. However, differences between post-stroke and control participants were mainly found when stance position was modified. Compare to controls, steps with the preferred leg (N-PAS) were earlier and shorter (in time and length), whereas steps with the non-preferred leg (PAS) were also shorter but took longer. For post-stroke participants, step duration was longer and utilized more steps when stepping with the more-involved leg compared to the less-involved leg. Conclusions: Stepping with the more-involved leg can be facilitated by unweighting the leg. The differences between groups, and legs in post-stroke participants illustrate the simultaneous bipedal role (support and stepping) both legs have in reactive stepping and should be considered for reactive balance training.
AB - Introduction: Asymmetrical sensorimotor function after stroke creates unique challenges for bipedal tasks such as walking or perturbation-induced reactive stepping. Preference for initiating steps with the less-involved (preferred) leg after a perturbation has been reported with limited information on the stepping response of the more-involved (non-preferred) leg. Understanding the capacity of both legs to respond to a perturbation would enhance the design of future treatment approaches. This pilot study investigated the difference in perturbation-induced stepping between legs in stroke participant and non-impaired controls. We hypothesized that stepping performance will be different between groups as well as between legs for post-stroke participants. Methods: Thirty-six participants (20 persons post-stroke, 16 age matched controls) were given an anterior perturbation from three stance positions: symmetrical (SS), preferred asymmetrical (PAS−70% body weight on the preferred leg), and non-preferred asymmetrical (N-PAS−70% body weight on the non-preferred leg). Kinematic and kinetic data were collected to measure anticipatory postural adjustment (APA), characteristics of the first step (onset, length, height, duration), number of steps, and velocity of the body at heel strike. Group differences were tested using the Mann-Whitney U-test and differences between legs tested using the Wilcoxon signed-rank test with an alpha level of 0.05. Results: Stepping with the more-involved leg increased from 11.5% of trials in SS and N-PAS up to 46% in PAS stance position for participants post-stroke. Post-stroke participants had an earlier APA and always took more steps than controls to regain balance. However, differences between post-stroke and control participants were mainly found when stance position was modified. Compare to controls, steps with the preferred leg (N-PAS) were earlier and shorter (in time and length), whereas steps with the non-preferred leg (PAS) were also shorter but took longer. For post-stroke participants, step duration was longer and utilized more steps when stepping with the more-involved leg compared to the less-involved leg. Conclusions: Stepping with the more-involved leg can be facilitated by unweighting the leg. The differences between groups, and legs in post-stroke participants illustrate the simultaneous bipedal role (support and stepping) both legs have in reactive stepping and should be considered for reactive balance training.
KW - Compensatory stepping
KW - Postural control
KW - Reactive balance
KW - Rehabilitation
KW - Stroke
UR - http://www.scopus.com/inward/record.url?scp=85069764627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069764627&partnerID=8YFLogxK
U2 - 10.3389/fneur.2019.00711
DO - 10.3389/fneur.2019.00711
M3 - Article
C2 - 31333566
AN - SCOPUS:85069764627
SN - 1664-2295
VL - 10
JO - Frontiers in Neurology
JF - Frontiers in Neurology
IS - JUL
M1 - 711
ER -