TY - JOUR
T1 - PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension
AU - Ryan, John J.
AU - Marsboom, Glenn
AU - Fang, Yong Hu
AU - Toth, Peter T.
AU - Morrow, Erik
AU - Luo, Nancy
AU - Piao, Lin
AU - Hong, Zhigang
AU - Ericson, Kyle
AU - Zhang, Hannah J.
AU - Han, Mei
AU - Haney, Chad R.
AU - Chen, Chin Tu
AU - Sharp, Willard W.
AU - Archer, Stephen L.
PY - 2013/4/15
Y1 - 2013/4/15
N2 - Rationale: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance.The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. Objectives: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed.MFN2 therapy was tested in PAH PASMC and in models of PAH. Methods: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. Measurements and Main Results: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. Conclusions: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.
AB - Rationale: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance.The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. Objectives: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed.MFN2 therapy was tested in PAH PASMC and in models of PAH. Methods: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. Measurements and Main Results: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. Conclusions: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.
KW - Female sex
KW - Hypoxia-inducible factor-1 α
KW - Mitochondrial fission
KW - Optic atrophy 1
KW - Peroxisome proliferator-activated receptor gamma coactivator-1 α
UR - http://www.scopus.com/inward/record.url?scp=84876848950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876848950&partnerID=8YFLogxK
U2 - 10.1164/rccm.201209-1687OC
DO - 10.1164/rccm.201209-1687OC
M3 - Article
C2 - 23449689
AN - SCOPUS:84876848950
SN - 1073-449X
VL - 187
SP - 865
EP - 878
JO - American journal of respiratory and critical care medicine
JF - American journal of respiratory and critical care medicine
IS - 8
ER -