pH controlled assembly of a self-complementary halogen-bonded dimer

Leonardo Maugeri, Ellen M.G. Jamieson, David B. Cordes, Alexandra M.Z. Slawin, Douglas Philp*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Phenols and their corresponding phenoxide anions can form halogen bonds with neutral iodotriazoles. The strength of these interactions depends critically on the protonation state of the oxygen atom-the interaction of the phenoxide anion is more than an order of magnitude stronger than the corresponding phenol. The assembly of a molecule bearing both an iodotriazole and a phenoxide anion into a self-complementary dimer, stabilised by two halogen bonds between the phenoxide anions and the neutral iodotriazoles has been demonstrated. The corresponding phenol shows no halogen bond mediated assembly either in the solid or in the solution state. This assembly process can be actuated simply by a change in protonation state-treatment of the phenol with one equivalent of base results in deprotonation and assembly of the dimer. The structure of the homodimer formed by the phenoxide-bearing iodotriazole has been determined in the solid state and19F NMR spectroscopy demonstrates that the assembled dimer persists in solution and that it has significant stability.19F NMR spectroscopy has also been used to demonstrate that the assembly process is completely reversible.

Original languageEnglish (US)
Pages (from-to)938-945
Number of pages8
JournalChemical Science
Volume8
Issue number2
DOIs
StatePublished - 2017

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'pH controlled assembly of a self-complementary halogen-bonded dimer'. Together they form a unique fingerprint.

Cite this