Abstract
We study a set of models of self-propelled particles that achieve collective motion through similar alignment-based dynamics, considering versions with and without repulsive interactions that do not affect the heading directions. We explore their phase space within a broad range of values of two nondimensional parameters (coupling strength and Peclet number), characterizing their polarization and degree of clustering. The resulting phase diagrams display equivalent, similarly distributed regions for all models with repulsion. The diagrams without repulsion exhibit differences, in particular for high coupling strengths. We compare the boundaries and representative states of all regions, identifying various regimes that had not been previously characterized. We analyze in detail three types of homogeneous polarized states, comparing them to existing theoretical and numerical results by computing their velocity and density correlations, giant number fluctuations, and local order-density coupling. We find that they all deviate in one way or another from the theoretical predictions, attributing these differences either to the remaining inhomogeneities or to finite-size effects. We discuss our results in terms of the generic or specific features of each model, their thermodynamic limit, and the high mixing and low mixing regimes. Our study provides a broad, overarching perspective on the multiple phases and states found in alignment-based self-propelled particle models.
| Original language | English (US) |
|---|---|
| Article number | A51 |
| Journal | Physical Review E |
| Volume | 104 |
| Issue number | 4 |
| DOIs | |
| State | Published - Oct 2021 |
Funding
China Scholarship Council Deutsche Forschungsgemeinschaft National Natural Science Foundation of China We thank J. Toner and B. Mahault for their valuable comments and discussions. Y.Z. is grateful for financial support from the China Scholarship Council (CSC). P.R. and Y.Z. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Emmy Noether Programm (RO 4766/2-1) and under Germany's Excellence Strategy EXC 2002/1 “Science of Intelligence” Project No. 390523135. This research was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61374165. The work of C.H. was partially funded by CHuepe Labs Inc.
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics