Phenotypic plasticity in normal breast derived epithelial cells

Candice A.M. Sauder, Jillian E. Koziel, Mi Ran Choi, Melanie J. Fox, Brenda R. Grimes, Sunil Badve, Rachel J. Blosser, Milan Radovich, Christina C. Lam, Melville B. Vaughan, Brittney Shea Herbert, Susan E. Clare*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Background: Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture.Results: All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells.Conclusions: The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools.

Original languageEnglish (US)
Article number20
JournalBMC Cell Biology
Volume15
Issue number1
DOIs
StatePublished - Jun 10 2014

Funding

This work was funded by grants from Susan G. Komen for the Cure (SEC, SB, BH), Oracle Giving (SEC, BH), The Breast Cancer Research Foundation (MC, SEC), the Catherine Peachey Fund (MR, SEC), the Division of General Surgery, Department of Surgery, Indiana University School of Medicine (SEC, CAMS), a fellowship from the IUSCC Cancer Biology Training Program (JK), the IU Melvin and Bren Simon Cancer Center (IUSCC), and the Indiana Genomics Initiative (INGEN) supported in part by the Lilly Endowment, Inc. (BH, BRG, SEC). Publication costs were defrayed by donations received at the Solheim Pink Bow Luncheon in Lake Geneva, Wisconsin, USA. CAMS was the recipient of an NIH loan repayment award in Health Disparities Research. Devin L. Blunck and Lindsay N. Hughes provided excellent technical assistance. The authors are grateful to Jay Sharma of Celprogen (San Pedro, CA, USA) for his assistance with the quantitative PCR reactions. Drs. George W. Sledge, Jr., Eric A. Wiebke and Keith D. Lillemoe were unstinting in their support of the KTB. The authors thank Dr. Anna Maria Storniolo and the staff of the KTB; and the thousands of donors and hundreds of volunteers who have selflessly given of themselves to enable the success of the Komen Tissue Bank.

Keywords

  • Basal
  • Breast
  • Embryonic
  • Epithelium
  • Metaplasia
  • Plasticity
  • Squamous

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Phenotypic plasticity in normal breast derived epithelial cells'. Together they form a unique fingerprint.

Cite this