Abstract
Multiple organ dysfunction syndrome (MODS) is one of the most common causes of death in critically ill children. However, despite decades of clinical trials, there are no comprehensive approaches to the management of MODS or effective targeted therapies that have consistently improved outcomes. Better understanding the heterogeneity of MODS and characterizing subgroups of MODS patients could improve our understanding of the syndrome and help us develop new management strategies. We analyzed a cohort of 5,297 children with MODS from two children's hospitals and used subgraph-augmented non-negative matrix factorization (SANMF) to identify unique temporal patterns in organ dysfunction across four novel subgroups. We demonstrate that these subgroups are composed of patients with distinct clinical characteristics and are independently predictive of clinical outcomes. Our work suggests that these subgroups represent four relevant phenotypes of pediatric MODS that could be used to identify novel management strategies.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
Editors | Illhoi Yoo, Jinbo Bi, Xiaohua Tony Hu |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 968-972 |
Number of pages | 5 |
ISBN (Electronic) | 9781728118673 |
DOIs | |
State | Published - Nov 2019 |
Event | 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 - San Diego, United States Duration: Nov 18 2019 → Nov 21 2019 |
Publication series
Name | Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
---|
Conference
Conference | 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 11/18/19 → 11/21/19 |
Funding
ACKNOWLEDGMENTS The authors thank Neethi Pinto, MD of the University of Chicago for her support of this project. This research is partly supported by NIH/NICHD (R21HD096402, Sanchez-Pinto) and NIH/NLM (R21LM012618, Luo). The authors thank Neethi Pinto, MD of the University of Chicago for her support of this project. This research is partly supported by NIH/NICHD (R21HD096402, Sanchez-Pinto) and NIH/NLM (R21LM012618, Luo)
Keywords
- organ dysfunction
- pattern clustering
- pediatric critical care
- precision medicine
- unsupervised learning
ASJC Scopus subject areas
- Biochemistry
- Biotechnology
- Molecular Medicine
- Modeling and Simulation
- Health Informatics
- Pharmacology (medical)
- Public Health, Environmental and Occupational Health