Photo-accelerated fast charging of lithium-ion batteries

Anna Lee, Márton Vörös, Wesley M. Dose, Jens Niklas, Oleg Poluektov, Richard D. Schaller, Hakim Iddir, Victor A. Maroni, Eungje Lee, Brian Ingram, Larry A. Curtiss, Christopher S. Johnson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Due to their exceptional high energy density, lithium-ion batteries are of central importance in many modern electrical devices. A serious limitation, however, is the slow charging rate used to obtain the full capacity. Thus far, there have been no ways to increase the charging rate without losses in energy density and electrochemical performance. Here we show that the charging rate of a cathode can be dramatically increased via interaction with white light. We find that a direct exposure of light to an operating LiMn2O4 cathode during charging leads to a remarkable lowering of the battery charging time by a factor of two or more. This enhancement is enabled by the induction of a microsecond long-lived charge separated state, consisting of Mn4+ (hole) plus electron. This results in more oxidized metal centers and ejected lithium ions are created under light and with voltage bias. We anticipate that this discovery could pave the way to the development of new fast recharging battery technologies.

Original languageEnglish (US)
Article number4946
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Photo-accelerated fast charging of lithium-ion batteries'. Together they form a unique fingerprint.

Cite this