TY - JOUR
T1 - Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water
AU - Lian, Shichen
AU - Kodaimati, Mohamad S.
AU - Weiss, Emily A.
N1 - Funding Information:
This work was supported as part of the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE- DE-SC0000989 (particle synthesis and optical spectroscopy), and by the National Science Foundation through Award No. CHE-1664184 (catalysis experiments). This work made use of the Keck-II facility of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. We thank Jenna Logsdon, Prof. Yilin Wu and Prof. Michael Wasielewski for their assistance with collection of SAXS data and for the use of their GC instrument. SAXS experiments used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Funding Information:
This work was supported as part of the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-DE-SC0000989 (particle synthesis and optical spectroscopy), and by the National Science Foundation through Award No. CHE-1664184 (catalysis experiments). This work made use of the Keck-II facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. We thank Jenna Logsdon, Prof. Yilin Wu and Prof. Michael Wasielewski for their assistance with collection of SAXS data and for the use of their GC instrument. SAXS experiments used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/1/23
Y1 - 2018/1/23
N2 - This paper describes the use of electrostatic assemblies of negatively charged colloidal CuInS2/ZnS quantum dot (QD) sensitizers and positively charged, trimethylamino-functionalized iron tetraphenylporphyrin catalysts (FeTMA) to photoreduce CO2 to CO in water upon illumination with 450 nm light. This system achieves a turnover number (TON) of CO (per FeTMA) of 450 after 30 h of illumination, with a selectivity of 99%. Its sensitization efficiency (TON per Joule of photons absorbed) is a factor of 11 larger than the previous record for photosensitization of an iron porphyrin catalyst for this reaction, held by a system in which both QDs and metal porphyrin were uncharged. Steady-state and time-resolved optical spectroscopy provides evidence for electrostatic assembly of QDs and FeTMA. Control of the size of the assemblies with addition of a screening counterion, K+, and a correlation between their measured size and their catalytic activity, indicates that the enhancement in performance of this system over the analogous uncharged system is due to the proximity of the FeTMA catalyst to multiple light-absorbing QDs and the selective formation of QD-FeTMA contacts (rather than QD-QD or FeTMA-FeTMA contacts). This system therefore shows the ability to funnel photoinduced electrons to a reaction center, which is crucial for carrying out reactions that require multistep redox processes under low photon flux, and thus is an important advance in developing artificial photocatalytic systems that function in natural light.
AB - This paper describes the use of electrostatic assemblies of negatively charged colloidal CuInS2/ZnS quantum dot (QD) sensitizers and positively charged, trimethylamino-functionalized iron tetraphenylporphyrin catalysts (FeTMA) to photoreduce CO2 to CO in water upon illumination with 450 nm light. This system achieves a turnover number (TON) of CO (per FeTMA) of 450 after 30 h of illumination, with a selectivity of 99%. Its sensitization efficiency (TON per Joule of photons absorbed) is a factor of 11 larger than the previous record for photosensitization of an iron porphyrin catalyst for this reaction, held by a system in which both QDs and metal porphyrin were uncharged. Steady-state and time-resolved optical spectroscopy provides evidence for electrostatic assembly of QDs and FeTMA. Control of the size of the assemblies with addition of a screening counterion, K+, and a correlation between their measured size and their catalytic activity, indicates that the enhancement in performance of this system over the analogous uncharged system is due to the proximity of the FeTMA catalyst to multiple light-absorbing QDs and the selective formation of QD-FeTMA contacts (rather than QD-QD or FeTMA-FeTMA contacts). This system therefore shows the ability to funnel photoinduced electrons to a reaction center, which is crucial for carrying out reactions that require multistep redox processes under low photon flux, and thus is an important advance in developing artificial photocatalytic systems that function in natural light.
KW - artificial photosynthesis
KW - copper indium sulfide
KW - electrostatic self-assembly
KW - nanocrystals
KW - photoredox catalysis
UR - http://www.scopus.com/inward/record.url?scp=85042183089&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042183089&partnerID=8YFLogxK
U2 - 10.1021/acsnano.7b07377
DO - 10.1021/acsnano.7b07377
M3 - Article
C2 - 29298382
AN - SCOPUS:85042183089
SN - 1936-0851
VL - 12
SP - 568
EP - 575
JO - ACS Nano
JF - ACS Nano
IS - 1
ER -