TY - JOUR
T1 - Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 Layer
AU - Kamire, Rebecca J.
AU - Materna, Kelly L.
AU - Hoffeditz, William L.
AU - Phelan, Brian T.
AU - Thomsen, Julianne M.
AU - Farha, Omar K.
AU - Hupp, Joseph T.
AU - Brudvig, Gary W.
AU - Wasielewski, Michael R.
N1 - Funding Information:
This work was supported by the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under award number DE-SC0001059. Ellipsometry measurements were performed in the Keck-II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. UV-vis absorption measurements with the integrating sphere were performed in the Keck Biophysics Facility at Northwestern University, which is supported in part by grant NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. We thank Daria L. Huang for synthesis of the precursor for IrIr and Drs. Aaron J. Bloomfield and Bradley J. Brennan for assistance with the synthesis of IrSil.
Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/2/23
Y1 - 2017/2/23
N2 - Improving stability and slowing charge recombination are some of the greatest challenges in the development of dye-sensitized photoelectrochemical cells (DSPECs) for solar fuels production. We have investigated the effect of encasing dye molecules in varying thicknesses of Al2O3 deposited by atomic layer deposition (ALD) before catalyst loading on both the stability and the charge transfer dynamics in organic dye-sensitized TiO2 photoanodes containing iridium-based molecular water-oxidation catalysts. In the TiO2|dye|Al2O3|catalyst electrodes, a sufficiently thick ALD layer protects the perylene-3,4-dicarboximide (PMI) chromophores from degradation over several weeks of exposure to light. The insulating capacity of the layer allows a higher photocurrent in the presence of ALD while initial charge injection is slowed by only 1.6 times, as observed by femtosecond transient absorption spectroscopy. Rapid picosecond-scale catalyst oxidation is observed in the presence of a dinuclear catalyst, IrIr, but is slowed to tens of picoseconds for a mononuclear catalyst, IrSil, that incorporates a long linker. Photoelectrochemical experiments demonstrate higher photocurrents with IrSil compared to IrIr, which show that recombination is slower for IrSil, while higher photocurrents with IrIr upon addition of ALD layers confirm that ALD successfully slows charge recombination. These findings demonstrate that, beyond stability improvements, ALD can contribute to tuning charge transfer dynamics in photoanodes for solar fuels production and may be particularly useful for slowing charge recombination and accounting for varying charge transfer rates based on the molecular structures of incorporated catalysts. (Chemical Equation Presented).
AB - Improving stability and slowing charge recombination are some of the greatest challenges in the development of dye-sensitized photoelectrochemical cells (DSPECs) for solar fuels production. We have investigated the effect of encasing dye molecules in varying thicknesses of Al2O3 deposited by atomic layer deposition (ALD) before catalyst loading on both the stability and the charge transfer dynamics in organic dye-sensitized TiO2 photoanodes containing iridium-based molecular water-oxidation catalysts. In the TiO2|dye|Al2O3|catalyst electrodes, a sufficiently thick ALD layer protects the perylene-3,4-dicarboximide (PMI) chromophores from degradation over several weeks of exposure to light. The insulating capacity of the layer allows a higher photocurrent in the presence of ALD while initial charge injection is slowed by only 1.6 times, as observed by femtosecond transient absorption spectroscopy. Rapid picosecond-scale catalyst oxidation is observed in the presence of a dinuclear catalyst, IrIr, but is slowed to tens of picoseconds for a mononuclear catalyst, IrSil, that incorporates a long linker. Photoelectrochemical experiments demonstrate higher photocurrents with IrSil compared to IrIr, which show that recombination is slower for IrSil, while higher photocurrents with IrIr upon addition of ALD layers confirm that ALD successfully slows charge recombination. These findings demonstrate that, beyond stability improvements, ALD can contribute to tuning charge transfer dynamics in photoanodes for solar fuels production and may be particularly useful for slowing charge recombination and accounting for varying charge transfer rates based on the molecular structures of incorporated catalysts. (Chemical Equation Presented).
UR - http://www.scopus.com/inward/record.url?scp=85014966285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014966285&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.6b11672
DO - 10.1021/acs.jpcc.6b11672
M3 - Article
AN - SCOPUS:85014966285
SN - 1932-7447
VL - 121
SP - 3752
EP - 3764
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 7
ER -