TY - JOUR
T1 - Photoelectron spectrum of PrO-
AU - Kafader, Jared O.
AU - Ray, Manisha
AU - Jarrold, Caroline Chick
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/8/14
Y1 - 2015/8/14
N2 - The photoelectron (PE) spectrum of PrO- exhibits a short 835 ± 20 cm-1 vibrational progression of doublets (210 ± 30 cm-1 splitting) assigned to transitions from the 4f2 [3H4] σ6s2 Ω = 4 anion ground state to the 4f2 [3H4] σ6s Ω = 3.5 and 4.5 neutral states. This assignment is analogous to that of the recently reported PE spectrum of CeO-, though the 82 cm-1 splitting between the 4f [2F2.5] σ6s Ω = 2 and Ω = 3 CeO neutral states could not be resolved [Ray et al., J. Chem. Phys. 142, 064305 (2015)]. The origin of the transition to the Ω = 3.5 neutral ground state is 0.96 ± 0.01 eV, which is the adiabatic electron affinity of PrO. Density functional theory calculations on the anion and neutral molecules support the assignment. The appearance of multiple, irregularly spaced and low-intensity features observed ca. 1 eV above the ground state cannot be reconciled with low-lying electronic states of PrO that are accessible via one-electron detachment. However, neutral states correlated with the 4f2 [3H4] 5d superconfiguration are predicted to be approximately 1 eV above the 4f2 [3H4] σ6s Ω = 3.5 neutral ground state, leading to the assignment of these features to shake-up transitions to the excited neutral states. Based on tentative hot band transition assignments, the term energy of the previously unobserved 4f2 [3H4] σ6s Ω = 2.5 neutral state is determined to be 1840 ± 110 cm-1.
AB - The photoelectron (PE) spectrum of PrO- exhibits a short 835 ± 20 cm-1 vibrational progression of doublets (210 ± 30 cm-1 splitting) assigned to transitions from the 4f2 [3H4] σ6s2 Ω = 4 anion ground state to the 4f2 [3H4] σ6s Ω = 3.5 and 4.5 neutral states. This assignment is analogous to that of the recently reported PE spectrum of CeO-, though the 82 cm-1 splitting between the 4f [2F2.5] σ6s Ω = 2 and Ω = 3 CeO neutral states could not be resolved [Ray et al., J. Chem. Phys. 142, 064305 (2015)]. The origin of the transition to the Ω = 3.5 neutral ground state is 0.96 ± 0.01 eV, which is the adiabatic electron affinity of PrO. Density functional theory calculations on the anion and neutral molecules support the assignment. The appearance of multiple, irregularly spaced and low-intensity features observed ca. 1 eV above the ground state cannot be reconciled with low-lying electronic states of PrO that are accessible via one-electron detachment. However, neutral states correlated with the 4f2 [3H4] 5d superconfiguration are predicted to be approximately 1 eV above the 4f2 [3H4] σ6s Ω = 3.5 neutral ground state, leading to the assignment of these features to shake-up transitions to the excited neutral states. Based on tentative hot band transition assignments, the term energy of the previously unobserved 4f2 [3H4] σ6s Ω = 2.5 neutral state is determined to be 1840 ± 110 cm-1.
UR - http://www.scopus.com/inward/record.url?scp=84939240082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939240082&partnerID=8YFLogxK
U2 - 10.1063/1.4928371
DO - 10.1063/1.4928371
M3 - Article
C2 - 26277136
AN - SCOPUS:84939240082
SN - 0021-9606
VL - 143
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 6
M1 - 064305
ER -