TY - JOUR
T1 - Photoinduced electron transfer in a triad that can be assembled/disassembled by two different external inputs. Toward molecular-level electrical extension cables
AU - Ballardini, Roberto
AU - Balzani, Vincenzo
AU - Clemente-León, Miguel
AU - Credi, Alberto
AU - Teresa Gandolfi, Maria
AU - Ishow, Eléna
AU - Perkins, Julie
AU - Fraser Stoddart, J.
AU - Tseng, Hsian Rong
AU - Wenger, Sabine
PY - 2002/10/30
Y1 - 2002/10/30
N2 - We have designed, synthesized, and investigated a self-assembling supramolecular system which mimics, at a molecular level, the function performed by a macroscopic electrical extension cable. The system is made up of three components, 12+, 2-H3+, and 3. Component 12+ consists of two moieties: a [Ru(bpy)3]2+ unit, which plays the role of an electron donor under light excitation, and a DB24C8 crown ether, which fulfills the function of a socket. The wire-type component 2-H3+ is also composed of two moieties, a secondary dialkylammonium-ion center and a bipyridinium unit, which thread into the DB24C8 crown ether socket of 12+ and the 1/5DN38C10 crown-ether socket 3, respectively. The photochemical, photophysical, and electrochemical properties of the three separated components, of the 12+ ⊃ 2-H3+ and 2-H3+ ⊂ 3 dyads, and of the 12+ ⊃ 2-H3+ ⊂ 3 triad have been investigated in CH2Cl2 solution containing 2% MeCN. Reversible connection/disconnection of the two plug/socket systems can be controlled independently by acid/base and redox stimulation. The behavior of the various different dyads and triad has been monitored by light absorption and emission spectroscopies, as well as by electrochemical techniques. In the fully connected 12+ ⊃ 2-H3+ ⊂ 3 triad, light excitation of the [Ru(bpy)3]2+ unit of component 12+ is followed by electron transfer (k = 2.8 x 108 s-1) to the bipyridinium unit of component 2-H3+, which is plugged into component 3. Possible schemes to obtain improved molecular-level electrical extension cables are discussed.
AB - We have designed, synthesized, and investigated a self-assembling supramolecular system which mimics, at a molecular level, the function performed by a macroscopic electrical extension cable. The system is made up of three components, 12+, 2-H3+, and 3. Component 12+ consists of two moieties: a [Ru(bpy)3]2+ unit, which plays the role of an electron donor under light excitation, and a DB24C8 crown ether, which fulfills the function of a socket. The wire-type component 2-H3+ is also composed of two moieties, a secondary dialkylammonium-ion center and a bipyridinium unit, which thread into the DB24C8 crown ether socket of 12+ and the 1/5DN38C10 crown-ether socket 3, respectively. The photochemical, photophysical, and electrochemical properties of the three separated components, of the 12+ ⊃ 2-H3+ and 2-H3+ ⊂ 3 dyads, and of the 12+ ⊃ 2-H3+ ⊂ 3 triad have been investigated in CH2Cl2 solution containing 2% MeCN. Reversible connection/disconnection of the two plug/socket systems can be controlled independently by acid/base and redox stimulation. The behavior of the various different dyads and triad has been monitored by light absorption and emission spectroscopies, as well as by electrochemical techniques. In the fully connected 12+ ⊃ 2-H3+ ⊂ 3 triad, light excitation of the [Ru(bpy)3]2+ unit of component 12+ is followed by electron transfer (k = 2.8 x 108 s-1) to the bipyridinium unit of component 2-H3+, which is plugged into component 3. Possible schemes to obtain improved molecular-level electrical extension cables are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0037202162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037202162&partnerID=8YFLogxK
U2 - 10.1021/ja025813x
DO - 10.1021/ja025813x
M3 - Article
C2 - 12392425
AN - SCOPUS:0037202162
SN - 0002-7863
VL - 124
SP - 12786
EP - 12795
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 43
ER -