Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical

Noah E. Horwitz, Brian T. Phelan, Jordan N. Nelson, Matthew D. Krzyaniak, Michael R. Wasielewski*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Photoinduced electron transfer reactions in organic donor-acceptor systems leading to long-lived radical ion pairs (RPs) have attracted broad interest for their potential applications in fields as diverse as solar energy conversion and spintronics. We present the photophysics and spin dynamics of an electron donor - electron acceptor - stable radical system consisting of a meta-phenylenediamine (mPD) donor covalently linked to a 4-aminonaphthalene-1,8-dicarboximide (ANI) electron-accepting chromophore as well as an α,γ-bisdiphenylene-β-phenylallyl (BDPA) stable radical. Selective photoexcitation of ANI produces the BDPA-mPD+•-ANI-• triradical in which the mPD+•-ANI-• RP spins are strongly exchange coupled. The presence of BDPA is found to greatly increase the RP intersystem crossing rate from the initially photogenerated BDPA-1(mPD+•-ANI-•) to BDPA-3(mPD+•-ANI-•), resulting in accelerated RP recombination via the triplet channel to produce BDPA-mPD-3∗ANI as compared to a reference molecule lacking the BDPA radical. The RP recombination rates observed are much faster than those previously reported for weakly coupled triradical systems. Time-resolved EPR spectroscopy shows that this process is also associated with strong spin polarization of the stable radical. Overall, these results show that RP intersystem crossing rates can be strongly influenced by stable radicals nearby strongly coupled RP systems, making it possible to use a third spin to control RP lifetimes down to a picosecond time scale.

Original languageEnglish (US)
Pages (from-to)2841-2853
Number of pages13
JournalJournal of Physical Chemistry A
Issue number18
StatePublished - May 12 2016

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry


Dive into the research topics of 'Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical'. Together they form a unique fingerprint.

Cite this