Pigment Unmixing of Hyperspectral Images of Paintings Using Deep Neural Networks

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, the problem of automatic nonlinear unmixing of hyperspectral reflectance data using works of art as test cases is described. We use a deep neural network to decompose a given spectrum quantitatively to the abundance values of pure pigments. We show that adding another step to identify the constituent pigments of a given spectrum leads to more accurate unmixing results. Towards this, we use another deep neural network to identify pigments first and integrate this information to different layers of the network used for pigment unmixing. As a test set, the hyperspectral images of a set of mock-up paintings consisting of a broad palette of pigment mixtures, and pure pigment exemplars, were measured. The results of the algorithm on the mock-up test set are reported and analyzed.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3217-3221
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 1 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • deep neural network
  • fusion
  • Hyperspectral imaging
  • nonlinear unmixing
  • pigment identification

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Pigment Unmixing of Hyperspectral Images of Paintings Using Deep Neural Networks'. Together they form a unique fingerprint.

Cite this