Abstract
Tilapia, a teleost fish species with large anatomically discrete islet organs (Brockmann bodies; BBs) that can be easily harvested without expensive and fickle islet isolation procedures, make an excellent donor species for experimental islet xenotransplantation research. When transplanted into streptozotocin-diabetic nude or severe combined immunodeficient mice, BBs provide long-term normoglycemia and mammalian-like glucose tolerance profiles. However, when transplanted into euthymic recipients, the mechanism of islet xenograft rejection appears very similar to that of islets from "large animal" donor species such as the very popular fetal/neonatal porcine islet cell clusters (ICCs). Tilapia islets are more versatile than ICCs and can be transplanted (1) into the renal subcapsular space, the cryptorchid or noncryptorchid testis, or intraportally as neovascularized cell transplants; (2) as directly vascularized organ transplants; or (3) intraperitoneally after microencapsulation. Unlike the popular porcine ICCs, BBs function immediately after transplantation; thus, their rejection can be assessed on the basis of loss of function as well as other parameters. We have also shown that transplantation of tilapia BBs into nude mice can be used to study the possible implications of cross-species physiological incompatibilities in xenotransplantation. Unfortunately, tilapia BBs might be unsuitable for clinical islet xenotransplantation because tilapia insulin differs from human insulin by 17 amino acids and, thus, would be immunogenic and less biologically active in humans. Therefore, we have produced transgenic tilapia that express a "humanized" tilapia insulin gene. Future improvements on these transgenic fish may allow tilapia to play an important role in clinical islet xenotransplantation.
Original language | English (US) |
---|---|
Pages (from-to) | 314-323 |
Number of pages | 10 |
Journal | ILAR journal / National Research Council, Institute of Laboratory Animal Resources |
Volume | 45 |
Issue number | 3 |
DOIs | |
State | Published - 2004 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- Animal Science and Zoology