Platform-independent classification system for predicting high-grade serous ovarian carcinoma molecular subtypes

A Shilpi, M Kandpal, Y Ji, BL Seagle, RV Davuluri

Research output: Contribution to journalArticle

Original languageEnglish (US)
Pages (from-to)1-9
Number of pages9
JournalJCO Clinical Cancer Informatics
Volume3
Issue number1
StatePublished - Apr 3 2019

Cite this

@article{b2f317694acf4113bed1af0961600a39,
title = "Platform-independent classification system for predicting high-grade serous ovarian carcinoma molecular subtypes",
author = "A Shilpi and M Kandpal and Y Ji and BL Seagle and RV Davuluri",
year = "2019",
month = "4",
day = "3",
language = "English (US)",
volume = "3",
pages = "1--9",
journal = "JCO Clinical Cancer Informatics",
number = "1",

}

Platform-independent classification system for predicting high-grade serous ovarian carcinoma molecular subtypes. / Shilpi, A; Kandpal, M; Ji, Y; Seagle, BL; Davuluri, RV.

In: JCO Clinical Cancer Informatics, Vol. 3, No. 1, 03.04.2019, p. 1-9.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Platform-independent classification system for predicting high-grade serous ovarian carcinoma molecular subtypes

AU - Shilpi, A

AU - Kandpal, M

AU - Ji, Y

AU - Seagle, BL

AU - Davuluri, RV

PY - 2019/4/3

Y1 - 2019/4/3

M3 - Article

VL - 3

SP - 1

EP - 9

JO - JCO Clinical Cancer Informatics

JF - JCO Clinical Cancer Informatics

IS - 1

ER -