Abstract
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals - it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO 3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO 6 octahedra - the structural signatures of perovskites - owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO 3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Original language | English (US) |
---|---|
Pages (from-to) | 68-72 |
Number of pages | 5 |
Journal | Nature |
Volume | 533 |
Issue number | 7601 |
DOIs | |
State | Published - May 5 2016 |
ASJC Scopus subject areas
- General