Polarization-gradient-assisted subrecoil cooling: Quantum calculations in one dimension

P. Marte*, R. Dum, R. Taïeb, P. Zoller, M. S. Shahriar, M. Prentiss

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

We present a fully quantum-mechanical analysis of laser cooling of an angular momentum Jg=1 to Je=1 transition in a laser configuration consisting of two counterpropagating linearly polarized laser beams. The essential feature of this configuration is the coexistence of velocity-selective coherent population trapping (VSCPT) and polarization-gradient cooling. The role of polarization-gradient cooling is to provide (i) for short interaction times "precooling" of the initial momentum distribution and (ii) in the long-time limit "confinement of velocities." This eventually leads to a larger number of atoms being captured in the dark state when compared with the schme of Aspect et al. [Phys. Rev. Lett. 61, 826 (1988)]. We find that the optimum parameter values for polarization-gradient cooling and VSCPT are in a completely different parameter regime: polarization-gradient cooling works best off resonance and for low intensities, while VSCPT works best on resonance. We can combine the advantages of polarization-gradient cooling and VSCPT in a scheme where we cycle in time between the optimum cooling parameters for both cooling mechanisms.

Original languageEnglish (US)
Pages (from-to)4826-4836
Number of pages11
JournalPhysical Review A
Volume49
Issue number6
DOIs
StatePublished - 1994

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Polarization-gradient-assisted subrecoil cooling: Quantum calculations in one dimension'. Together they form a unique fingerprint.

Cite this