Abstract
High-performance solution-processed metal oxide (MO) thin-film transistors (TFTs) are realized by fabricating a homojunction of indium oxide (In2O3) and polyethylenimine (PEI)-doped In2O3 (In2O3:x% PEI, x = 0.5–4.0 wt%) as the channel layer. A two-dimensional electron gas (2DEG) is thereby achieved by creating a band offset between the In2O3 and PEI-In2O3 via work function tuning of the In2O3:x% PEI, from 4.00 to 3.62 eV as the PEI content is increased from 0.0 (pristine In2O3) to 4.0 wt%, respectively. The resulting devices achieve electron mobilities greater than 10 cm2 V−1 s−1 on a 300 nm SiO2 gate dielectric. Importantly, these metrics exceed those of the devices composed of the pristine In2O3 materials, which achieve a maximum mobility of ≈4 cm2 V−1 s−1. Furthermore, a mobility as high as 30 cm2 V−1 s−1 is achieved on a high-k ZrO2 dielectric in the homojunction devices. This is the first demonstration of 2DEG-based homojunction oxide TFTs via band offset achieved by simple polymer doping of the same MO material.
Original language | English (US) |
---|---|
Article number | 1805082 |
Journal | Advanced Materials |
Volume | 31 |
Issue number | 4 |
DOIs | |
State | Published - Jan 25 2019 |
Keywords
- 2D electron gases
- PEI-doped InO
- homojunctions
- oxide electronics
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering