Polynucleotide adsorption to negatively charged surfaces in divalent salt solutions

Hao Cheng, Kai Zhang, Joseph A. Libera, Monica Olvera De La Cruz*, Michael J. Bedzyk

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

62 Scopus citations


Polynucleotide adsorption to negatively charged surfaces via divalent ions is extensively used in the study of biological systems. We analyze here the adsorption mechanism via a self-consistent mean-field model that includes the pH effect on the surface-charge density and the interactions between divalent ions and surface groups. The adsorption is driven by the cooperative effect of divalent metal ion condensation along polynucleotides and their reaction with the surface groups. Although the apparent reaction constants are enhanced by the presence of polynucleotides, the difference between reaction constants of different divalent ions at the ideal condition explains why not all divalent cations mediate DNA adsorption onto anionic surfaces. Calculated divalent salt concentration and pH value variations on polynucleotide adsorption are consistent with atomic force microscope results. Here we use long-period x-ray standing waves to study the adsorption of mercuratedpolyuridylic acid in a ZnCl2 aqueous solution onto a negatively charged hydroxyl-terminated silica surface. These in situ x-ray measurements, which simultaneously reveal the Hg and Zn distribution profiles along the surface normal direction, are in good agreement with our model. The model also provides the effects of polyelectrolyte line-charge density and monovalent salt on adsorption.

Original languageEnglish (US)
Pages (from-to)1164-1174
Number of pages11
JournalBiophysical Journal
Issue number4
StatePublished - Feb 2006

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'Polynucleotide adsorption to negatively charged surfaces in divalent salt solutions'. Together they form a unique fingerprint.

Cite this