Porosity controls spread of excitation in tectorial membrane traveling waves

Jonathan B. Sellon, Roozbeh Ghaffari, Shirin Farrahi, Guy P. Richardson, Dennis M. Freeman*

*Corresponding author for this work

Research output: Contribution to journalArticle

23 Scopus citations


Cochlear frequency selectivity plays a key role in our ability to understand speech, and is widely believed to be associated with cochlear amplification. However, genetic studies targeting the tectorial membrane (TM) have demonstrated both sharper and broader tuning with no obvious changes in hair bundle or somatic motility mechanisms. For example, cochlear tuning of Tectb -/- mice is significantly sharper than that of Tecta Y1870C/+ mice, even though TM stiffnesses are similarly reduced relative to wild-type TMs. Here we show that differences in TM viscosity can account for these differences in tuning. In the basal cochlear turn, nanoscale pores of TectaY1870C/+ TMs are significantly larger than those of Tectb -/- TMs. The larger pore size reduces shear viscosity (by ∼70%), thereby reducing traveling wave speed and increasing spread of excitation. These results demonstrate the previously unrecognized importance of TM porosity in cochlear and neural tuning.

Original languageEnglish (US)
Pages (from-to)1406-1413
Number of pages8
JournalBiophysical Journal
Issue number6
StatePublished - Mar 18 2014

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Porosity controls spread of excitation in tectorial membrane traveling waves'. Together they form a unique fingerprint.

  • Cite this