TY - JOUR
T1 - Pre- and postsynaptic actions of opioid and orphan opioid agonists in the rat arcuate nucleus and ventromedial hypothalamus in vitro
AU - Emmerson, Paul J.
AU - Miller, Richard J.
PY - 1999/6/1
Y1 - 1999/6/1
N2 - 1. Using whole-cell patch clamp recording from neurones in an in vitro slice preparation, we have examined opioid- and orphanin FQ (OFQ)-mediated modulation of synaptic transmission in the rat arcuate nucleus and ventromedial hypothalamus (VMH). 2. Application of OFQ activated a Ba2+-sensitive and inwardly rectifying K+ conductance in ~ 50% of arcuate nucleus neurones and ~ 95% of VMH neurones. The OFQ-activated current was blocked by the nociceptin antagonist [Phe1Ψ/(CH2NH)Gly2]-nociceptin (1-13) NH2 (NCA), a peptide that on its own exhibited only weak agonist activity at high concentrations (> 1 μM). Similar current activation was observed with the μ agonist DAMGO but not δ (DPDPE) or κ (U69593) agonists. 3. In arcuate nucleus neurones, DAMGO (1 μM), U69593 (1 μM) and OFQ (100 nM to 1 μM) but not DPDPE (1 μM) were found to depress the amplitude of electrically evoked glutamatergic postsynaptic currents (EPSCs) and decrease the magnitude of paired-pulse depression, indicating that opioid receptors were located presynaptically. 4. In VMH neurones, DAMGO strongly depressed the EPSC amplitude in all cells examined. DAMGO decreased the magnitude of paired-pulse depression, indicating that μ receptors were located presynaptically. U69593 weakly depressed the EPSC while OFQ and DPDPE had no effect. 5. In VMH neurones, DAMGO depressed the frequency of miniature EPSCs (-58%) in the presence of tetrodotoxin and Cd2+ (100 μM), suggesting that the actions of μ receptors could be mediated by an inhibition of the synaptic vesicle release process downstream of Ca2+ entry. 6. The data presented show that presynaptic modulation of excitatory neurotransmission in the arcuate nucleus occurs through μ, κ and the orphan opioid ORL-1 receptors while in the VMH presynaptic modulation only occurs through μ opioid receptors. Additionally, postsynaptic μ and ORL-1 receptors in both the arcuate nucleus and VMH modulate neuronal excitability through activation of a K+ conductance.
AB - 1. Using whole-cell patch clamp recording from neurones in an in vitro slice preparation, we have examined opioid- and orphanin FQ (OFQ)-mediated modulation of synaptic transmission in the rat arcuate nucleus and ventromedial hypothalamus (VMH). 2. Application of OFQ activated a Ba2+-sensitive and inwardly rectifying K+ conductance in ~ 50% of arcuate nucleus neurones and ~ 95% of VMH neurones. The OFQ-activated current was blocked by the nociceptin antagonist [Phe1Ψ/(CH2NH)Gly2]-nociceptin (1-13) NH2 (NCA), a peptide that on its own exhibited only weak agonist activity at high concentrations (> 1 μM). Similar current activation was observed with the μ agonist DAMGO but not δ (DPDPE) or κ (U69593) agonists. 3. In arcuate nucleus neurones, DAMGO (1 μM), U69593 (1 μM) and OFQ (100 nM to 1 μM) but not DPDPE (1 μM) were found to depress the amplitude of electrically evoked glutamatergic postsynaptic currents (EPSCs) and decrease the magnitude of paired-pulse depression, indicating that opioid receptors were located presynaptically. 4. In VMH neurones, DAMGO strongly depressed the EPSC amplitude in all cells examined. DAMGO decreased the magnitude of paired-pulse depression, indicating that μ receptors were located presynaptically. U69593 weakly depressed the EPSC while OFQ and DPDPE had no effect. 5. In VMH neurones, DAMGO depressed the frequency of miniature EPSCs (-58%) in the presence of tetrodotoxin and Cd2+ (100 μM), suggesting that the actions of μ receptors could be mediated by an inhibition of the synaptic vesicle release process downstream of Ca2+ entry. 6. The data presented show that presynaptic modulation of excitatory neurotransmission in the arcuate nucleus occurs through μ, κ and the orphan opioid ORL-1 receptors while in the VMH presynaptic modulation only occurs through μ opioid receptors. Additionally, postsynaptic μ and ORL-1 receptors in both the arcuate nucleus and VMH modulate neuronal excitability through activation of a K+ conductance.
UR - http://www.scopus.com/inward/record.url?scp=0033153291&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033153291&partnerID=8YFLogxK
U2 - 10.1111/j.1469-7793.1999.0431t.x
DO - 10.1111/j.1469-7793.1999.0431t.x
M3 - Article
C2 - 10332093
AN - SCOPUS:0033153291
SN - 0022-3751
VL - 517
SP - 431
EP - 445
JO - Journal of physiology
JF - Journal of physiology
IS - 2
ER -