Abstract
Increased cancer cell motility constitutes a root cause of end organ destruction and mortality, but its complex regulation represents a barrier to precision targeting. We use the unique characteristics of small molecules to probe and selectively modulate cell motility. By coupling efficient chemical synthesis routes to multiple upfront in parallel phenotypic screens, we identify that KBU2046 inhibits cell motility and cell invasion in vitro. Across three different murine models of human prostate and breast cancer, KBU2046 inhibits metastasis, decreases bone destruction, and prolongs survival at nanomolar blood concentrations after oral administration. Comprehensive molecular, cellular and systemic-level assays all support a high level of selectivity. KBU2046 binds chaperone heterocomplexes, selectively alters binding of client proteins that regulate motility, and lacks all the hallmarks of classical chaperone inhibitors, including toxicity. We identify a unique cell motility regulatory mechanism and synthesize a targeted therapeutic, providing a platform to pursue studies in humans.
Original language | English (US) |
---|---|
Article number | 2454 |
Journal | Nature communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2018 |
Funding
Financial support for this research was provided to R.Ber. by the Veterans Administration (IBX002842A) and the National Institutes of Health (R01 CA122985, Prostate SPORE CA90386 and P30 CA069533), to J.B. by the National Institutes of Health (R01 GM086688) and to A.B. from the National Institutes of Health (GM094585), resources of the Argonne Leadership Computing Facility at Argonne National Laboratory (supported by the Office of Science of the US Department of Energy under contract DE-AC02- 06CH11357) and allocations for computing (supported by the Department of Energy's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program). We wish to thank I. Ogden for technical support in performing cell and molecular-based assays, M. Lin for help in performing luciferase assays, A. Yemelyanov for help in transfection, and Mikko Taipale and Susan Lindquist for generously providing LUMIER reagents Financial support for this research was provided to R.Ber. by the Veterans Administration (IBX002842A) and the National Institutes of Health (R01 CA122985, Prostate SPORE CA90386 and P30 CA069533), to J.B. by the National Institutes of Health (R01 GM086688) and to A.B. from the National Institutes of Health (GM094585), resources of the Argonne Leadership Computing Facility at Argonne National Laboratory (supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357) and allocations for computing (supported by the Department of Energy’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program). We wish to thank I. Ogden for technical support in performing cell and molecular-based assays, M. Lin for help in performing luciferase assays, A. Yemelyanov for help in transfection, and Mikko Taipale and Susan Lindquist for generously providing LUMIER reagents.
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry, Genetics and Molecular Biology
- General Physics and Astronomy