Abstract
Cancer histology reflects underlying molecular processes and disease progression, and contains rich phenotypic information that is predictive of patient outcomes. In this study, we demonstrate a computational approach for learning patient outcomes from digital pathology images using deep learning to combine the power of adaptive machine learning algorithms with traditional survival models. We illustrate how this approach can integrate information from both histology images and genomic biomarkers to predict time-to-event patient outcomes, and demonstrate performance surpassing the current clinical paradigm for predicting the survival of patients diagnosed with glioma. We also provide techniques to visualize the tissue patterns learned by these deep learning survival models, and establish a framework for addressing intratumoral heterogeneity and training data deficits.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Oct 3 2017 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)