Predicting severe pneumonia outcomes in children

Derek J. Williams*, Yuwei Zhu, Carlos G. Grijalva, Wesley H. Self, Frank E. Harrell, Carrie Reed, Chris Stockmann, Sandra R. Arnold, Krow K. Ampofo, Evan J. Anderson, Anna M. Bramley, Richard G. Wunderink, Jonathan A. McCullers, Andrew T. Pavia, Seema Jain, Kathryn M. Edwards

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Background: Substantial morbidity and excessive care variation are seen with pediatric pneumonia. Accurate risk-stratification tools to guide clinical decision-making are needed. METHODS: We developed risk models to predict severe pneumonia outcomes in children (<18 years) by using data from the Etiology of Pneumonia in the Community Study, a prospective study of community-acquired pneumonia hospitalizations conducted in 3 US cities from January 2010 to June 2012. In-hospital outcomes were organized into an ordinal severity scale encompassing severe (mechanical ventilation, shock, or death), moderate (intensive care admission only), and mild (non-intensive care hospitalization) outcomes. Twenty predictors, including patient, laboratory, and radiographic characteristics at presentation, were evaluated in 3 models: a full model included all 20 predictors, a reduced model included 10 predictors based on expert consensus, and an electronic health record (EHR) model included 9 predictors typically available as structured data within comprehensive EHRs. Ordinal regression was used for model development. Predictive accuracy was estimated by using discrimination (concordance index). RESULTS: Among the 2319 included children, 21% had a moderate or severe outcome (14% moderate, 7% severe). Each of the models accurately identified risk for moderate or severe pneumonia (concordance index across models 0.78-0.81). Age, vital signs, chest indrawing, and radiologic infiltrate pattern were the strongest predictors of severity. The reduced and EHR models retained most of the strongest predictors and performed as well as the full model. CONCLUSIONS: We created 3 risk models that accurately estimate risk for severe pneumonia in children. Their use holds the potential to improve care and outcomes.

Original languageEnglish (US)
Article numbere20161019
JournalPediatrics
Volume138
Issue number4
DOIs
StatePublished - Oct 2016

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health

Fingerprint Dive into the research topics of 'Predicting severe pneumonia outcomes in children'. Together they form a unique fingerprint.

Cite this