TY - GEN
T1 - Predicting the demographics of Twitter users from website traffic data
AU - Culotta, Aron
AU - Ravi, Nirmal Kumar
AU - Cutler, Jennifer
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Understanding the demographics of users of online social networks has important applications for health, marketing, and public messaging. In this paper, we predict the demographics of Twitter users based on whom they follow. Whereas most prior approaches rely on a supervised learning approach, in which individual users are labeled with demographics, we instead create a distantly labeled dataset by collecting audience measurement data for 1,500 websites (e.g., 50% of visitors to gizmodo.com are estimated to have a bachelor's degree). We then fit a regression model to predict these demographics using information about the followers of each website on Twitter. The resulting average held-out correlation is .77 across six different variables (gender, age, ethnicity, education, income, and child status). We additionally validate the model on a smaller set of Twitter users labeled individually for ethnicity and gender, finding performance that is surprisingly competitive with a fully supervised approach.
AB - Understanding the demographics of users of online social networks has important applications for health, marketing, and public messaging. In this paper, we predict the demographics of Twitter users based on whom they follow. Whereas most prior approaches rely on a supervised learning approach, in which individual users are labeled with demographics, we instead create a distantly labeled dataset by collecting audience measurement data for 1,500 websites (e.g., 50% of visitors to gizmodo.com are estimated to have a bachelor's degree). We then fit a regression model to predict these demographics using information about the followers of each website on Twitter. The resulting average held-out correlation is .77 across six different variables (gender, age, ethnicity, education, income, and child status). We additionally validate the model on a smaller set of Twitter users labeled individually for ethnicity and gender, finding performance that is surprisingly competitive with a fully supervised approach.
UR - http://www.scopus.com/inward/record.url?scp=84959474409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959474409&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84959474409
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 72
EP - 78
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -