Preliminary trial of symmetry-based resistance in individuals with post-stroke hemiparesis

Ann M. Simon, Brian M. Kelly, Daniel P. Ferris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

We tested a novel control strategy for robotic rehabilitation devices used by individuals with post-stroke hemiparesis. Symmetry-based resistance increases resistance when limb forces become more asymmetric during bilateral exercise. The underlying rationales for the control mode are that it will guide patients to increase paretic limb activation while teaching them to accurately gauge paretic limb force production relative to the non-paretic limb. During a one day training session, seven subjects post-stroke performed lower limb extensions in symmetry-based resistance mode on a robotic exercise machine. Subjects improved lower limb symmetry from 28.6%±3.9% to 36.2%±4.3% while under symmetry-based resistance training (ANOVA, P=0.03), but did not maintain the improved lower limb symmetry during a constant resistance post-test. Two subjects that showed the large improvements in symmetry during the one day session performed additional days of training. Those results suggest that some patients demonstrate long lasting benefits with symmetry-based resistance training.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages5294-5299
Number of pages6
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Preliminary trial of symmetry-based resistance in individuals with post-stroke hemiparesis'. Together they form a unique fingerprint.

Cite this