PRESIDE: A Judge Entity Recognition and Disambiguation Model for US District Court Records

Adam R. Pah, Christian J. Rozolis, David L Schwartz, Charlotte S. Alexander, Scales Okn Consortium

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The docket sheet of a court case contains a wealth of information about the progression of a case, the parties' and judge's decision-making along the way, and the case's ultimate outcome that can be used in analytical applications. However, the unstructured text of the docket sheet and the terse and variable phrasing of docket entries require the development of new models to identify key entities to enable analysis at a systematic level. We developed a judge entity recognition language model and disambiguation pipeline for US District Court records. Our model can robustly identify mentions of judicial entities in free text (~99% F-1 Score) and outperforms general state-of-the-art language models by 13%. Our disambiguation pipeline is able to robustly identify both appointed and non-appointed judicial actors and correctly infer the type of appointment (~99% precision). Lastly, we show with a case study on in forma pauperis decision-making that there is substantial error (~30%) attributing decision outcomes to judicial actors if the free text of the docket is not used to make the identification and attribution.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2721-2728
Number of pages8
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: Dec 15 2021Dec 18 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/15/2112/18/21

Keywords

  • court records
  • disambiguation
  • judicial entities
  • named entity recognition

ASJC Scopus subject areas

  • Information Systems and Management
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Information Systems

Fingerprint

Dive into the research topics of 'PRESIDE: A Judge Entity Recognition and Disambiguation Model for US District Court Records'. Together they form a unique fingerprint.

Cite this