TY - JOUR
T1 - Prevention of breast cancer growth, invasion, and metastasis by antiestrogen tamoxifen alone or in combination with urokinase inhibitor B- 428
AU - Xing, Rosie Hongmei
AU - Mazar, Andrew
AU - Henkin, Jack
AU - Rabbani, Shafaat Ahmed
PY - 1997/8/15
Y1 - 1997/8/15
N2 - Urokinase (urokinase plasminogen activator, uPA) and its cell surface receptor (uPA receptor, uPAR) play an important role in a variety of physiological and pathological processes requiring cell migration and tissue remodeling. Using our syngeneic model of uPAR overexpression by the rat breast cancer cell line Mat B-III, we have examined the ability of the nonsteroidal antiestrogen, tamoxifen (TAM), and of a selective synthetic inhibitor of uPA, 4-iodo benzo[b]thiophene-2-carboxamidine (B-428), to inhibit expression of uPA and uPAR as well as cell growth, invasion, and metastasis of wild-tyge Mat B-III cells and of cells overexpressing uPAR (Mat B-III-uPAR). Both TAM and B-428 inhibited uPAR gene transcription, mRNA expression, protein production and also decreased the proliferative and invasive capacity of Mat B-III and Mat B-III-uPAR. The effects of TAM and B- 428 were more pronounced when these agents were tested in combination. Both control and experimental cells (1 x 106 cells) were inoculated orthotopically into the mammary fat pad of syngeneic female Fisher rats, and animals were infused i.p. with either TAM and B-428 alone or in combination for 2 weeks. Control animals receiving vehicle alone developed large tumors and macroscopic metastases to lungs, liver, and lymph nodes. In contrast to this, experimental animals receiving TAM and B-428 showed a significant decrease in primary tumor volume and metastases. Combination therapy had especially marked effects in blocking progression of the primary tumor in experimental animals inoculated with highly aggressive Mat B-III-uPAR cells. These results underscore the utility of anti-proteolytic agents (B-428) in addition to standard hormone therapy (TAM) in advanced breast cancer patients where the uPA/uPAR system plays a key role in tumor progression.
AB - Urokinase (urokinase plasminogen activator, uPA) and its cell surface receptor (uPA receptor, uPAR) play an important role in a variety of physiological and pathological processes requiring cell migration and tissue remodeling. Using our syngeneic model of uPAR overexpression by the rat breast cancer cell line Mat B-III, we have examined the ability of the nonsteroidal antiestrogen, tamoxifen (TAM), and of a selective synthetic inhibitor of uPA, 4-iodo benzo[b]thiophene-2-carboxamidine (B-428), to inhibit expression of uPA and uPAR as well as cell growth, invasion, and metastasis of wild-tyge Mat B-III cells and of cells overexpressing uPAR (Mat B-III-uPAR). Both TAM and B-428 inhibited uPAR gene transcription, mRNA expression, protein production and also decreased the proliferative and invasive capacity of Mat B-III and Mat B-III-uPAR. The effects of TAM and B- 428 were more pronounced when these agents were tested in combination. Both control and experimental cells (1 x 106 cells) were inoculated orthotopically into the mammary fat pad of syngeneic female Fisher rats, and animals were infused i.p. with either TAM and B-428 alone or in combination for 2 weeks. Control animals receiving vehicle alone developed large tumors and macroscopic metastases to lungs, liver, and lymph nodes. In contrast to this, experimental animals receiving TAM and B-428 showed a significant decrease in primary tumor volume and metastases. Combination therapy had especially marked effects in blocking progression of the primary tumor in experimental animals inoculated with highly aggressive Mat B-III-uPAR cells. These results underscore the utility of anti-proteolytic agents (B-428) in addition to standard hormone therapy (TAM) in advanced breast cancer patients where the uPA/uPAR system plays a key role in tumor progression.
UR - http://www.scopus.com/inward/record.url?scp=0030795071&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030795071&partnerID=8YFLogxK
M3 - Article
C2 - 9270032
AN - SCOPUS:0030795071
SN - 0008-5472
VL - 57
SP - 3585
EP - 3593
JO - Cancer Research
JF - Cancer Research
IS - 16
ER -