TY - GEN
T1 - Prior Setting in Practice
T2 - 2020 ACM CHI Conference on Human Factors in Computing Systems, CHI 2020
AU - Sarma, Abhraneel
AU - Kay, Matthew
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/4/21
Y1 - 2020/4/21
N2 - Bayesian statistical analysis is steadily growing in popularity and use. Choosing priors is an integral part of Bayesian inference. While there exist extensive normative recommendations for prior setting, little is known about how priors are chosen in practice. We conducted a survey (N = 50) and interviews (N = 9) where we used interactive visualizations to elicit prior distributions from researchers experienced withBayesian statistics and asked them for rationales for those priors. We found that participants' experience and philosophy influence how much and what information they are willing to incorporate into their priors, manifesting as different levels of informativeness and skepticism. We also identified three broad strategies participants use to set their priors: centrality matching, interval matching, and visual mass allocation. We discovered that participants' understanding of the notion of 'weakly informative priors"-A commonly-recommended normative approach to prior setting-manifests very differently across participants. Our results have implications both for how to develop prior setting recommendations and how to design tools to elicit priors in Bayesian analysis.
AB - Bayesian statistical analysis is steadily growing in popularity and use. Choosing priors is an integral part of Bayesian inference. While there exist extensive normative recommendations for prior setting, little is known about how priors are chosen in practice. We conducted a survey (N = 50) and interviews (N = 9) where we used interactive visualizations to elicit prior distributions from researchers experienced withBayesian statistics and asked them for rationales for those priors. We found that participants' experience and philosophy influence how much and what information they are willing to incorporate into their priors, manifesting as different levels of informativeness and skepticism. We also identified three broad strategies participants use to set their priors: centrality matching, interval matching, and visual mass allocation. We discovered that participants' understanding of the notion of 'weakly informative priors"-A commonly-recommended normative approach to prior setting-manifests very differently across participants. Our results have implications both for how to develop prior setting recommendations and how to design tools to elicit priors in Bayesian analysis.
KW - bayesian inference
KW - descriptive analysis
KW - prior distributions
UR - http://www.scopus.com/inward/record.url?scp=85091279094&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091279094&partnerID=8YFLogxK
U2 - 10.1145/3313831.3376377
DO - 10.1145/3313831.3376377
M3 - Conference contribution
AN - SCOPUS:85091279094
T3 - Conference on Human Factors in Computing Systems - Proceedings
BT - CHI 2020 - Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
PB - Association for Computing Machinery
Y2 - 25 April 2020 through 30 April 2020
ER -