Probing surface-porphyrazine reduction potentials by molecular design

Peng Sun, Hong Zong, Khalid Salaita, Jacob B. Ketter, Anthony G.M. Barrett, Brian M Hoffman*, Chad A Mirkin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

This manuscript reports electrochemical and angle-resolved X-ray photoelectron spectroscopy measurements of surface-bound porphyrazine monolayers in which the molecule-surface distance and molecular orientation of the porphyrazine are controlled through the design of the adsorbates. This system has allowed us to probe the importance of molecule-surface interaction in determining the shift in reduction potential upon binding to a gold surface. This quantity currently is in theoretical dispute, with one computation indicating that a porphyrazine/porphyrin exhibits an extremely large covalent binding energy (∼10 eV) to a gold surface, whereas a more recent one finds the binding energy to be only a fraction of an electronvolt. Our study indicates that the shift in reduction potential upon surface binding is not a discontinuous function of the molecule-surface distance, as would be the case if covalent interaction of the porphyrazine core with the gold surface were controlling, but rather varies smoothly. This, therefore, rules out the possibility that the large potential shift seen for a porphyrazine whose macrocyclic core lies ∼3.9 Å above the gold surface, relative to one that lies ∼8.9 Å above the surface, ΔΔE = 340 mV, is caused by direct covalent binding of the π-system to the metal surface.

Original languageEnglish (US)
Pages (from-to)18151-18153
Number of pages3
JournalJournal of Physical Chemistry B
Volume110
Issue number37
DOIs
StatePublished - Sep 21 2006

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Probing surface-porphyrazine reduction potentials by molecular design'. Together they form a unique fingerprint.

Cite this