Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA

Zachary J. Urbach, Sarah S. Park, Steven L. Weigand, James E. Rix, Byeongdu Lee, Chad A. Mirkin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In a magnetic field, cubic Fe3O4 nanoparticles exhibit assembly behavior that is a consequence of a competition between magnetic dipole–dipole and ligand interactions. In most cases, the interactions between short hydrophobic ligands dominate and dictate assembly outcome. To better tune the face-to-face interactions, cubic Fe3O4 nanoparticles were functionalized with DNA. Their assembly behaviors were investigated both with and without an applied magnetic field. Upon application of a field, the tilted orientation of cubes, enabled by the flexible DNA ligand shell, led to an unexpected crystallographic alignment of the entire superlattice, as opposed to just the individual particles, along the field direction as revealed by small and wide-angle X-ray scattering. This observation is dependent upon DNA length and sequence and cube dimensions. Taken together, these studies show how combining physical and chemical control can expand the possibilities of crystal engineering with DNA.

Original languageEnglish (US)
Pages (from-to)4065-4069
Number of pages5
JournalAngewandte Chemie - International Edition
Volume60
Issue number8
DOIs
StatePublished - Feb 19 2021

Keywords

  • DNA
  • crystal engineering
  • magnetic materials
  • nanoparticles
  • self-assembly

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry

Fingerprint

Dive into the research topics of 'Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA'. Together they form a unique fingerprint.

Cite this