TY - JOUR
T1 - Progesterone inhibits the growth of human neuroblastoma
T2 - in vitro and in vivo evidence.
AU - Atif, Fahim
AU - Sayeed, Iqbal
AU - Yousuf, Seema
AU - Ishrat, Tauheed
AU - Hua, Fang
AU - Wang, Jun
AU - Brat, Daniel J.
AU - Stein, Donald G.
N1 - Funding Information:
D Stein is an occasional consultant to BHR, a producer of progesterone, and receives compensation for these services. The terms of this arrangement have been reviewed and approved by Emory University in accordance with its conflict of interest policies. This research was supported in part by a gift from Allen and Company, New York.
PY - 2011/9
Y1 - 2011/9
N2 - We investigated the antitumorogenic effects of progesterone (P4) in a human neuroblastoma (SK-N-AS) cell line in vitro and in a mouse xenograft model of neuroblastoma. The safety of P4 was tested in rat primary cortical neurons and human foreskin fibroblasts (HFF-1). At high doses, P4 significantly (P < 0.05) decreased SK-N-AS cell viability in vitro, and this effect was not blocked either by 5α-reductase inhibitor, finasteride or the P4 receptor antagonist RU486. Even at very high doses, P4 did not induce any cell death in healthy primary cortical neurons or HFF-1. The bioavailability of P4 24 h after the last injection in the serum of treated animals was significantly (P < 0.05) higher (10-33 μg/mL) than in untreated animals. In nude mice, P4 (50 and 100 mg/kg) inhibited neuroblastoma growth by ~50% over 8 d of treatment. No drug toxicity was observed in the mice, as measured by body weight and activity. P4 suppressed the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP-9, MMP-2), which are involved in tumor vascular development. High-dose P4 inhibited tumor growth by suppressing cell proliferation and inducing apoptosis, as evidenced by the expression of proliferating cell nuclear antigen and cleaved caspase-3. P4 significantly increased the expression of P4 receptor isoform-A and suppressed phospho-Akt (Ser437) expression. In conclusion, at high doses, P4 effectively inhibits the growth of solid neuroblastoma tumor and has high bioavailability, selective toxicity and a high margin of safety, making it a possible candidate for further study as a potential clinical treatment of neuroblastoma.
AB - We investigated the antitumorogenic effects of progesterone (P4) in a human neuroblastoma (SK-N-AS) cell line in vitro and in a mouse xenograft model of neuroblastoma. The safety of P4 was tested in rat primary cortical neurons and human foreskin fibroblasts (HFF-1). At high doses, P4 significantly (P < 0.05) decreased SK-N-AS cell viability in vitro, and this effect was not blocked either by 5α-reductase inhibitor, finasteride or the P4 receptor antagonist RU486. Even at very high doses, P4 did not induce any cell death in healthy primary cortical neurons or HFF-1. The bioavailability of P4 24 h after the last injection in the serum of treated animals was significantly (P < 0.05) higher (10-33 μg/mL) than in untreated animals. In nude mice, P4 (50 and 100 mg/kg) inhibited neuroblastoma growth by ~50% over 8 d of treatment. No drug toxicity was observed in the mice, as measured by body weight and activity. P4 suppressed the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP-9, MMP-2), which are involved in tumor vascular development. High-dose P4 inhibited tumor growth by suppressing cell proliferation and inducing apoptosis, as evidenced by the expression of proliferating cell nuclear antigen and cleaved caspase-3. P4 significantly increased the expression of P4 receptor isoform-A and suppressed phospho-Akt (Ser437) expression. In conclusion, at high doses, P4 effectively inhibits the growth of solid neuroblastoma tumor and has high bioavailability, selective toxicity and a high margin of safety, making it a possible candidate for further study as a potential clinical treatment of neuroblastoma.
UR - http://www.scopus.com/inward/record.url?scp=84871356672&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871356672&partnerID=8YFLogxK
U2 - 10.2119/molmed.2010.00255
DO - 10.2119/molmed.2010.00255
M3 - Article
C2 - 21695351
AN - SCOPUS:84871356672
SN - 1076-1551
VL - 17
SP - 1084
EP - 1094
JO - Molecular Medicine
JF - Molecular Medicine
IS - 9-10
ER -