Abstract
Organic solar cells are an inexpensive, flexible alternative to traditional silicon-based solar cells but disadvantaged by low power conversion efficiency due to empirical design and complex manufacturing processes. This process can be accelerated by generating a comprehensive set of potential candidates. However, this would require a laborious trial and error method of modeling all possible polymer configurations. A machine learning model has the potential to accelerate the process of screening potential donor candidates by associating structural features of the compound using molecular fingerprints with their highest occupied molecular orbital energies. In this paper, extremely randomized tree learning models are employed for the prediction of HOMO values for donor compounds, and a web application is developed.1 The proposed models outperform neural networks trained on molecular fingerprints as well as SMILES, as well as other state-of-the-art architectures such as Chemception and Molecular Graph Convolution on two datasets of varying sizes.
Original language | English (US) |
---|---|
Article number | 1900038 |
Journal | Molecular Informatics |
Volume | 38 |
Issue number | 11-12 |
DOIs | |
State | Published - Nov 1 2019 |
Funding
This work was performed under the following financial assistance award 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). Partial support is also acknowledged from DOE awards DE-SC0014330, DE-SC0019358. This work was performed under the following financial assistance award 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). Partial support is also acknowledged from DOE awards DE‐SC0014330, DE‐SC0019358.
Keywords
- Cheminformatics
- Machine Learning
- Organic Photovoltaics
- Solar Cells
ASJC Scopus subject areas
- Drug Discovery
- Molecular Medicine
- Structural Biology
- Computer Science Applications
- Organic Chemistry