TY - JOUR
T1 - Protective effect of Cl-amidine against CLP-induced lethal septic shock in mice
AU - Zhao, Ting
AU - Pan, Baihong
AU - Alam, Hasan B.
AU - Liu, Baoling
AU - Bronson, Roderick T.
AU - Deng, Qiufang
AU - Wu, Erxi
AU - Li, Yongqing
PY - 2016/11/7
Y1 - 2016/11/7
N2 - Production of innate and adaptive immune cells from hematopoietic stem cells, and maturation of T lymphocytes are effective immune responses to fight severe microbial infection. In sepsis, this emergency myelopoiesis is damaged, leading to failure of bacterial clearance, and excessive stress-induced steroids cause immature T-lymphocyte apoptosis in thymus. We recently found that Cl-amidine, a peptidylarginine deiminase (PAD) inhibitor, improves survival in a mouse model of cecal ligation and puncture (CLP)-induced septic shock. In the present study we investigated how Cl-amidine promotes survival, focusing on protective effects of Cl-amidine on immune response. We confirmed survival-improving effect of Cl-amidine and are the first to explore the role of Cl-amidine in immune response. CLP caused bone marrow (BM) and thymus atrophy, decreased innate immune cells in BM. CLP increased levels of cytokines (IL-1β, IL-6, and TNF-α) and bacteria load in blood/liver. In primary splenocyte culture, lipopolysaccharide increased TNF-α production. In contrast, Cl-amidine attenuated these CLP and lipopolysaccharide-induced alterations. Moreover, Cl-amidine increased circulating monocytes. Collectively, our results demonstrate Cl-amidine plays protective roles by significantly decreasing BM and thymus atrophy, restoring innate immune cells in BM, increasing blood monocytes and blood/liver bacteria clearance, and attenuating pro-inflammatory cytokine production in a murine model of lethal sepsis.
AB - Production of innate and adaptive immune cells from hematopoietic stem cells, and maturation of T lymphocytes are effective immune responses to fight severe microbial infection. In sepsis, this emergency myelopoiesis is damaged, leading to failure of bacterial clearance, and excessive stress-induced steroids cause immature T-lymphocyte apoptosis in thymus. We recently found that Cl-amidine, a peptidylarginine deiminase (PAD) inhibitor, improves survival in a mouse model of cecal ligation and puncture (CLP)-induced septic shock. In the present study we investigated how Cl-amidine promotes survival, focusing on protective effects of Cl-amidine on immune response. We confirmed survival-improving effect of Cl-amidine and are the first to explore the role of Cl-amidine in immune response. CLP caused bone marrow (BM) and thymus atrophy, decreased innate immune cells in BM. CLP increased levels of cytokines (IL-1β, IL-6, and TNF-α) and bacteria load in blood/liver. In primary splenocyte culture, lipopolysaccharide increased TNF-α production. In contrast, Cl-amidine attenuated these CLP and lipopolysaccharide-induced alterations. Moreover, Cl-amidine increased circulating monocytes. Collectively, our results demonstrate Cl-amidine plays protective roles by significantly decreasing BM and thymus atrophy, restoring innate immune cells in BM, increasing blood monocytes and blood/liver bacteria clearance, and attenuating pro-inflammatory cytokine production in a murine model of lethal sepsis.
UR - http://www.scopus.com/inward/record.url?scp=84994807614&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994807614&partnerID=8YFLogxK
U2 - 10.1038/srep36696
DO - 10.1038/srep36696
M3 - Article
C2 - 27819302
AN - SCOPUS:84994807614
SN - 2045-2322
VL - 6
JO - Scientific Reports
JF - Scientific Reports
M1 - 36696
ER -