TY - JOUR
T1 - Protein kinase C-δ and phosphatidylinositol 3-Kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells
AU - Minhajuddin, Mohd
AU - Bijli, Kaiser M.
AU - Fazal, Fabeha
AU - Sassano, Antonella
AU - Nakayama, Keiichi I.
AU - Hay, Nissim
AU - Platanias, Leonidas C.
AU - Rahman, Arshad
PY - 2009/2/13
Y1 - 2009/2/13
N2 - We have shown that the mammalian target of rapamycin (mTOR) down-regulates thrombin-induced ICAM-1 expression in endothelial cells by suppressing the activation of NF-κB. However, the mechanisms by which mTOR is activated to modulate these responses remain to be addressed. Here, we show that thrombin engages protein kinase C (PKC)-δ and phosphattidylinositol 3-kinase (PI3K)/Akt pathways to activate mTOR and thereby dampens NF-κB activation and intercellular adhesion molecule 1 (ICAM-1) expression. Stimulation of human vascular endothelial cells with thrombin induced the phosphorylation of mTOR and its downstream target p70 S6 kinase in a PKC-δ- and PI3K/Akt-dependent manner. Consistent with this, thrombin-induced phosphorylation of p70 S6 kinase was defective in embryonic fibroblasts from mice with targeted disruption of PKC-δ (Pkc-δ-/-), p85α and p85β subunits of the PI3K (p85α-/-β-/-), or Akt1 and Akt2 (Akt1-/-2-/-). Furthermore, we observed that expression of the constitutively active form of PKC-δ or Akt was sufficient to induce NF-κB activation and ICAM-1 expression, and that co-expression of mTOR suppressed these responses. In reciprocal experiments, inhibition/depletion of mTOR augmented NF-κB activation and ICAM-1 expression induced by PKC-δ or Akt. In control experiments, increasing or impairing mTOR signaling by the above approaches produced similar effects on NF-κB activation and ICAM-1 expression induced by thrombin. Thus, these data reveal an important role of PKC-δ and PI3K/Akt pathways in activating mTOR as an endogenous modulator to ensure a tight regulation of NF-κB signaling of ICAM-1 expression in endothelial cells.
AB - We have shown that the mammalian target of rapamycin (mTOR) down-regulates thrombin-induced ICAM-1 expression in endothelial cells by suppressing the activation of NF-κB. However, the mechanisms by which mTOR is activated to modulate these responses remain to be addressed. Here, we show that thrombin engages protein kinase C (PKC)-δ and phosphattidylinositol 3-kinase (PI3K)/Akt pathways to activate mTOR and thereby dampens NF-κB activation and intercellular adhesion molecule 1 (ICAM-1) expression. Stimulation of human vascular endothelial cells with thrombin induced the phosphorylation of mTOR and its downstream target p70 S6 kinase in a PKC-δ- and PI3K/Akt-dependent manner. Consistent with this, thrombin-induced phosphorylation of p70 S6 kinase was defective in embryonic fibroblasts from mice with targeted disruption of PKC-δ (Pkc-δ-/-), p85α and p85β subunits of the PI3K (p85α-/-β-/-), or Akt1 and Akt2 (Akt1-/-2-/-). Furthermore, we observed that expression of the constitutively active form of PKC-δ or Akt was sufficient to induce NF-κB activation and ICAM-1 expression, and that co-expression of mTOR suppressed these responses. In reciprocal experiments, inhibition/depletion of mTOR augmented NF-κB activation and ICAM-1 expression induced by PKC-δ or Akt. In control experiments, increasing or impairing mTOR signaling by the above approaches produced similar effects on NF-κB activation and ICAM-1 expression induced by thrombin. Thus, these data reveal an important role of PKC-δ and PI3K/Akt pathways in activating mTOR as an endogenous modulator to ensure a tight regulation of NF-κB signaling of ICAM-1 expression in endothelial cells.
UR - http://www.scopus.com/inward/record.url?scp=63249119308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63249119308&partnerID=8YFLogxK
U2 - 10.1074/jbc.M805032200
DO - 10.1074/jbc.M805032200
M3 - Article
C2 - 19074768
AN - SCOPUS:63249119308
SN - 0021-9258
VL - 284
SP - 4052
EP - 4061
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 7
ER -