PsmPy: A Package for Retrospective Cohort Matching in Python

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Propensity score matching (PSM) is a technique used in retrospective investigation of cohort matching as an alternative approach to the prospective matching that is typically used by a randomized control trial (RCT). The process of selecting untreated cases that are the best match to the treated cases is the focus of this research. We created a PSM package for the python environment, termed PsmPy, to carry out this task. The PsmPy package debuted and proposed here is based on a logistic regression logit score where a match is selected using k-nearest neighbors (k-NN). Additional plotting and arguments are available to the user and are also described. To benchmark our method, we compared it with the existing R package, MatchIt, and evaluated our covariates' residual effect sizes with respect to the treatment condition before and after matching. Using a Mann-Whitney statistical test, we showed that our method significantly outperformed MatchIt in cohort matching (U=49, p<0.0001) when comparing residual effect sizes of the covariates. The PsmPy demonstrated a 10-fold average improvement in residual effect sizes amongst covariates when compared with the package MatchIt, suggesting that it is a viable alternative for use in propensity matching studies.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1354-1357
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

Keywords

  • COVID-19
  • MatchIt
  • PsmPy
  • Python
  • balance
  • causal inference
  • propensity score matching

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'PsmPy: A Package for Retrospective Cohort Matching in Python'. Together they form a unique fingerprint.

Cite this