TY - JOUR
T1 - Psychosis in Spinocerebellar Ataxias
T2 - a Case Series and Study of Tyrosine Hydroxylase in Substantia Nigra
AU - Turk, Katherine W.
AU - Flanagan, Margaret E.
AU - Josephson, Samuel
AU - Keene, C. Dirk
AU - Jayadev, Suman
AU - Bird, Thomas D.
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media, LLC.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Spinocerebellar ataxias are a genetically heterogeneous group of degenerative diseases typically characterized by progressive ataxia and to various degrees, neuropathy, amyotrophy, and ocular abnormalities. There is increasing evidence for non-motor manifestations associated with cerebellar syndromes including cognitive and psychiatric features. We studied a retrospective clinical case series of eight subjects with spinocerebellar ataxias (SCAs) 2, 3, 7, and 17, all displaying features of psychosis, and also measured tyrosine hydroxylase (TH) staining of the substantia nigra (SN) at autopsy, among four of the subjects. We hypothesized that increased dopamine production in the SN may underlie the pathophysiology of psychosis in SCAs, given evidence of increased dopamine production in the SN in schizophrenia, as measured by TH staining. We analyzed differences in TH staining between the SCA psychosis cohort (n = 4), a heterogeneous ataxic cohort without psychosis (n = 22), and non-diseased age- and sex-matched control group (n = 12). SCA subjects with psychosis did not differ significantly in TH staining versus ataxic cases without psychosis. There was, however, increased TH staining in the ataxic cohort with and without psychosis (n = 26), compared to non-diseased controls (n = 12). Psychotic features were similar across subjects, with the presence of delusions, paranoia, and auditory hallucinations. Our findings are preliminary because of small numbers of subjects and variable neuropathology; however, they suggest that psychosis is a clinical feature of SCAs and may be under-recognized. While the underlying pathophysiology remains to be fully established, it may be related to extra-cerebellar pathology, including a possible propensity for increased dopamine activity in the SN.
AB - Spinocerebellar ataxias are a genetically heterogeneous group of degenerative diseases typically characterized by progressive ataxia and to various degrees, neuropathy, amyotrophy, and ocular abnormalities. There is increasing evidence for non-motor manifestations associated with cerebellar syndromes including cognitive and psychiatric features. We studied a retrospective clinical case series of eight subjects with spinocerebellar ataxias (SCAs) 2, 3, 7, and 17, all displaying features of psychosis, and also measured tyrosine hydroxylase (TH) staining of the substantia nigra (SN) at autopsy, among four of the subjects. We hypothesized that increased dopamine production in the SN may underlie the pathophysiology of psychosis in SCAs, given evidence of increased dopamine production in the SN in schizophrenia, as measured by TH staining. We analyzed differences in TH staining between the SCA psychosis cohort (n = 4), a heterogeneous ataxic cohort without psychosis (n = 22), and non-diseased age- and sex-matched control group (n = 12). SCA subjects with psychosis did not differ significantly in TH staining versus ataxic cases without psychosis. There was, however, increased TH staining in the ataxic cohort with and without psychosis (n = 26), compared to non-diseased controls (n = 12). Psychotic features were similar across subjects, with the presence of delusions, paranoia, and auditory hallucinations. Our findings are preliminary because of small numbers of subjects and variable neuropathology; however, they suggest that psychosis is a clinical feature of SCAs and may be under-recognized. While the underlying pathophysiology remains to be fully established, it may be related to extra-cerebellar pathology, including a possible propensity for increased dopamine activity in the SN.
KW - Dopamine
KW - Neuropathology
KW - Psychosis
KW - Spinocerebellar ataxia
UR - http://www.scopus.com/inward/record.url?scp=85028995182&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028995182&partnerID=8YFLogxK
U2 - 10.1007/s12311-017-0882-5
DO - 10.1007/s12311-017-0882-5
M3 - Article
C2 - 28887803
AN - SCOPUS:85028995182
SN - 1473-4222
VL - 17
SP - 143
EP - 151
JO - Cerebellum
JF - Cerebellum
IS - 2
ER -