Pulsed laser deposition of amorphous diamond-like carbon films with ArF (193 nm) excimer laser

Fulin Xiong, Y. Y. Wang, V. Leppert, R. P.H. Chang

Research output: Contribution to journalArticlepeer-review

103 Scopus citations


We have deposited hydrogen-free diamond-like amorphous carbon films by ArF (193 nm) pulsed laser ablation of graphite. The deposition process is performed with a laser power density of only 5 X 108 W/cm2 at room temperature without any auxiliary energy source incorporation. The resulting films possess remarkable physical, optical, and mechanical properties that are close to those of diamond and distinct from the graphite target used. The films have a mechanical hardness up to 38 GPa, an optical energy band gap of 2.6 eV, and excellent thermal stability. Analysis of electron energy loss spectroscopy reveals the domination of diamond-type tetrahedral bonding structure in the films with the sp3bond fraction over 95%. Compared with other reported results of pulsed-laser-deposited diamond-like carbon films, our experimental results confirm that the laser wavelength or photon energy plays a crucial role in controlling the properties of the pulsed-laser-deposited diamond-like carbon films.

Original languageEnglish (US)
Pages (from-to)2265-2272
Number of pages8
JournalJournal of Materials Research
Issue number9
StatePublished - Sep 1993

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Pulsed laser deposition of amorphous diamond-like carbon films with ArF (193 nm) excimer laser'. Together they form a unique fingerprint.

Cite this