Pulseless electrical activity as the initial cardiac arrest rhythm: Importance of preexisting left ventricular function

Daniel I. Ambinder, Kaustubha D. Patil, Hikmet Kadioglu, Pace S. Wetstein, Richard S. Tunin, Sarah J. Fink, Susumu Tao, Giulio Agnetti, Henry R. Halperin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


BACKGROUND: Pulseless electrical activity (PEA) is a common initial rhythm in cardiac arrest. A substantial number of PEA arrests are caused by coronary ischemia in the setting of acute coronary occlusion, but the underlying mechanism is not well understood. We hypothesized that the initial rhythm in patients with acute coronary occlusion is more likely to be PEA than ventricular fibrillation in those with prearrest severe left ventricular dysfunction. METHODS AND RESULTS: We studied the initial cardiac arrest rhythm induced by acute left anterior descending coronary occlusion in swine without and with preexisting severe left ventricular dysfunction induced by prior infarcts in non-left anterior descending coronary territories. Balloon occlusion resulted in ventricular fibrillation in 18 of 34 naïve animals, occurring 23.5±9.0 minutes following occlusion, and PEA in 1 animal. However, all 18 animals with severe prearrest left ventricular dysfunction (ejection fraction 15±5%) developed PEA 1.7±1.1 minutes after occlusion. CONCLUSIONS: Acute coronary ischemia in the setting of severe left ventricular dysfunction produces PEA because of acute pump failure, which occurs almost immediately after coronary occlusion. After the onset of coronary ischemia, PEA occurred significantly earlier than ventricular fibrillation (<2 minutes versus 20 minutes). These findings support the notion that patients with baseline left ventricular dysfunction and suspected coronary disease who develop PEA should be evaluated for acute coronary occlusion.

Original languageEnglish (US)
Article numbere018671
JournalJournal of the American Heart Association
Issue number13
StatePublished - 2021


  • Acute myocardial infarction
  • Cardiac arrest
  • Pulseless electrical activity
  • Resuscitation

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Pulseless electrical activity as the initial cardiac arrest rhythm: Importance of preexisting left ventricular function'. Together they form a unique fingerprint.

Cite this