Quancorde: Boosting fidelity with Quantum Canary Ordered Diverse Ensembles

Gokul Subramanian Ravi*, Jonathan M. Baker, Kaitlin N. Smith, Nathan Earnest, Ali Javadi-Abhari, Frederic T. Chong

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

On today's noisy imperfect quantum devices, execution fidelity tends to collapse dramatically for most applications beyond a handful of qubits. It is therefore imperative to employ novel techniques that can boost quantum fidelity in new ways. This paper aims to boost quantum fidelity with Clifford canary circuits by proposing Quancorde: Quantum Canary Ordered Diverse Ensembles, a fundamentally newapproach to identifying the correct outcomes of extremely low-fidelity quantum applications. It is based on the key idea of diversity in quantum devices - variations in noise sources, make each (portion of a) device unique, and therefore, their impact on an application's fidelity, also unique. Quancorde utilizes Clifford canary circuits (which are classically simulable, but also resemble the target application structure and thus suffer similar structural noise impact) to order a diverse ensemble of devices or qubits/mappings approximately along the direction of increasing fidelity of the target application. Quancorde then estimates the correlation of the ensemble-wide probabilities of each output string of the application, with the canary ensemble ordering, and uses this correlation to weight the application's noisy probability distribution. The correct application outcomes are expected to have higher correlation with the canary ensemble order, and thus their probabilities are boosted in this process. Doing so, Quancorde improves the fidelity of evaluated quan-tum applications by a mean of 8.9x/4.2x (wrt. different baselines) and up to a maximum of 34x.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages66-77
Number of pages12
ISBN (Electronic)9798350347098
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Rebooting Computing, ICRC 2022 - San Francisco, United States
Duration: Dec 8 2022Dec 9 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Conference

Conference2022 IEEE International Conference on Rebooting Computing, ICRC 2022
Country/TerritoryUnited States
CitySan Francisco
Period12/8/2212/9/22

Keywords

  • quantum-computing,-clifford,-error-mitigation,-fidelity,-nisq

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computational Theory and Mathematics
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Quancorde: Boosting fidelity with Quantum Canary Ordered Diverse Ensembles'. Together they form a unique fingerprint.

Cite this