Quantification of isolated muscle compartment activity in extrinsic finger muscles for potential prosthesis control sites.

J. Alexander Birdwell*, Levi J. Hargrove, Richard F ff Weir

*Corresponding author for this work

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Prosthetic hands are becoming more advanced and gaining degrees-of-freedom similar to their human counterparts. However, the command interface enabling control of these prostheses needs to be improved for more intuitive functional use. One barrier to using electromyographic (EMG) signals as the command interface is measuring independent muscle control sites in the residual limb. Surface electrodes are commonly used to detect muscle activity in the forearm; however, the measured signals are often comprised of EMG signals from multiple muscles that are close together. This study investigated the suitability of the index and middle finger compartments of the extrinsic muscles as control sites for prostheses using a direct myocontrol interface. Fine-wire intramuscular electrodes were inserted into seven subjects and their ability to achieve isolated activations of each compartment was tested. The results showed five of the six compartments yield signals suitable for independent volitional control. The middle finger compartment of extensor digitorum communis was found to be incapable of isolated contractions and is therefore not recommended as a control site for direct myocontrol prostheses. A cross-correlation threshold was used to verify that simultaneously measured EMG signals were free from crosstalk and were therefore attributed to muscle co-activations.

Fingerprint

Fingers
Prostheses and Implants
Muscle
Prosthetics
Muscles
Electrodes
Chemical activation
Crosstalk
Forearm
Extremities
Hand
Wire

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Cite this

@article{b573f637fe234decb94c7bea9fca4d62,
title = "Quantification of isolated muscle compartment activity in extrinsic finger muscles for potential prosthesis control sites.",
abstract = "Prosthetic hands are becoming more advanced and gaining degrees-of-freedom similar to their human counterparts. However, the command interface enabling control of these prostheses needs to be improved for more intuitive functional use. One barrier to using electromyographic (EMG) signals as the command interface is measuring independent muscle control sites in the residual limb. Surface electrodes are commonly used to detect muscle activity in the forearm; however, the measured signals are often comprised of EMG signals from multiple muscles that are close together. This study investigated the suitability of the index and middle finger compartments of the extrinsic muscles as control sites for prostheses using a direct myocontrol interface. Fine-wire intramuscular electrodes were inserted into seven subjects and their ability to achieve isolated activations of each compartment was tested. The results showed five of the six compartments yield signals suitable for independent volitional control. The middle finger compartment of extensor digitorum communis was found to be incapable of isolated contractions and is therefore not recommended as a control site for direct myocontrol prostheses. A cross-correlation threshold was used to verify that simultaneously measured EMG signals were free from crosstalk and were therefore attributed to muscle co-activations.",
author = "Birdwell, {J. Alexander} and Hargrove, {Levi J.} and Weir, {Richard F ff}",
year = "2011",
month = "1",
day = "1",
language = "English (US)",
pages = "4104--4107",
journal = "Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Quantification of isolated muscle compartment activity in extrinsic finger muscles for potential prosthesis control sites.

AU - Birdwell, J. Alexander

AU - Hargrove, Levi J.

AU - Weir, Richard F ff

PY - 2011/1/1

Y1 - 2011/1/1

N2 - Prosthetic hands are becoming more advanced and gaining degrees-of-freedom similar to their human counterparts. However, the command interface enabling control of these prostheses needs to be improved for more intuitive functional use. One barrier to using electromyographic (EMG) signals as the command interface is measuring independent muscle control sites in the residual limb. Surface electrodes are commonly used to detect muscle activity in the forearm; however, the measured signals are often comprised of EMG signals from multiple muscles that are close together. This study investigated the suitability of the index and middle finger compartments of the extrinsic muscles as control sites for prostheses using a direct myocontrol interface. Fine-wire intramuscular electrodes were inserted into seven subjects and their ability to achieve isolated activations of each compartment was tested. The results showed five of the six compartments yield signals suitable for independent volitional control. The middle finger compartment of extensor digitorum communis was found to be incapable of isolated contractions and is therefore not recommended as a control site for direct myocontrol prostheses. A cross-correlation threshold was used to verify that simultaneously measured EMG signals were free from crosstalk and were therefore attributed to muscle co-activations.

AB - Prosthetic hands are becoming more advanced and gaining degrees-of-freedom similar to their human counterparts. However, the command interface enabling control of these prostheses needs to be improved for more intuitive functional use. One barrier to using electromyographic (EMG) signals as the command interface is measuring independent muscle control sites in the residual limb. Surface electrodes are commonly used to detect muscle activity in the forearm; however, the measured signals are often comprised of EMG signals from multiple muscles that are close together. This study investigated the suitability of the index and middle finger compartments of the extrinsic muscles as control sites for prostheses using a direct myocontrol interface. Fine-wire intramuscular electrodes were inserted into seven subjects and their ability to achieve isolated activations of each compartment was tested. The results showed five of the six compartments yield signals suitable for independent volitional control. The middle finger compartment of extensor digitorum communis was found to be incapable of isolated contractions and is therefore not recommended as a control site for direct myocontrol prostheses. A cross-correlation threshold was used to verify that simultaneously measured EMG signals were free from crosstalk and were therefore attributed to muscle co-activations.

UR - http://www.scopus.com/inward/record.url?scp=84863565888&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863565888&partnerID=8YFLogxK

M3 - Article

C2 - 22255242

AN - SCOPUS:84863565888

SP - 4104

EP - 4107

JO - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

JF - Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings

SN - 1557-170X

ER -